| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4571 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3076 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3938 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4906 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3045 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-ss 3934 df-pw 4568 df-uni 4875 |
| This theorem is referenced by: pwssb 5068 elpwpw 5069 elpwuni 5072 intss2 5075 rintn0 5076 dftr4 5224 uniixp 8897 fipwss 9387 dffi3 9389 uniwf 9779 numacn 10009 dfac12lem2 10105 fin23lem32 10304 isf34lem4 10337 isf34lem5 10338 fin1a2lem12 10371 itunitc1 10380 fpwwe2lem11 10601 tsksuc 10722 unirnioo 13417 restid 17403 mrcuni 17589 isacs3lem 18508 dmdprdd 19938 dprdfeq0 19961 dprdres 19967 dprdss 19968 dprdz 19969 subgdmdprd 19973 subgdprd 19974 dprd2dlem1 19980 dprd2da 19981 dmdprdsplit2lem 19984 ablfac1b 20009 lssintcl 20877 lbsextlem2 21076 lbsextlem3 21077 cssmre 21609 topgele 22824 topontopn 22834 unitg 22861 fctop 22898 cctop 22900 ppttop 22901 epttop 22903 mretopd 22986 resttopon 23055 ordtuni 23084 conncompcld 23328 islocfin 23411 kgentopon 23432 txuni2 23459 ptuni2 23470 ptbasfi 23475 xkouni 23493 prdstopn 23522 txdis 23526 txcmplem2 23536 xkococnlem 23553 qtoptop2 23593 qtopuni 23596 tgqtop 23606 opnfbas 23736 neifil 23774 filunibas 23775 trfil1 23780 flimfil 23863 cldsubg 24005 tgpconncompeqg 24006 tgpconncomp 24007 tsmsxplem1 24047 utoptop 24129 unirnblps 24314 unirnbl 24315 setsmstopn 24373 tngtopn 24545 bndth 24864 bcthlem5 25235 ovolficcss 25377 ovollb 25387 voliunlem2 25459 voliunlem3 25460 uniioovol 25487 uniioombl 25497 opnmbllem 25509 ubthlem1 30806 hsupcl 31275 hsupss 31277 hsupunss 31279 hsupval2 31345 fnpreimac 32602 unicls 33900 pwsiga 34127 sigainb 34133 insiga 34134 pwldsys 34154 ddemeas 34233 omssubadd 34298 cvmsss2 35268 dfon2lem2 35779 ntruni 36322 clsint2 36324 neibastop1 36354 neibastop2lem 36355 neibastop3 36357 topmeet 36359 topjoin 36360 fnemeet1 36361 fnemeet2 36362 fnejoin1 36363 opnmbllem0 37657 heiborlem1 37812 elrfi 42689 pwpwuni 45058 0ome 46534 |
| Copyright terms: Public domain | W3C validator |