Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4552 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
3 | dfss3 3920 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
4 | unissb 4887 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2105 ∀wral 3061 ⊆ wss 3898 𝒫 cpw 4547 ∪ cuni 4852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3443 df-in 3905 df-ss 3915 df-pw 4549 df-uni 4853 |
This theorem is referenced by: pwssb 5048 elpwpw 5049 elpwuni 5052 intss2 5055 rintn0 5056 dftr4 5216 uniixp 8780 fipwss 9286 dffi3 9288 uniwf 9676 numacn 9906 dfac12lem2 10001 fin23lem32 10201 isf34lem4 10234 isf34lem5 10235 fin1a2lem12 10268 itunitc1 10277 fpwwe2lem11 10498 tsksuc 10619 unirnioo 13282 restid 17241 mrcuni 17427 isacs3lem 18357 dmdprdd 19697 dprdfeq0 19720 dprdres 19726 dprdss 19727 dprdz 19728 subgdmdprd 19732 subgdprd 19733 dprd2dlem1 19739 dprd2da 19740 dmdprdsplit2lem 19743 ablfac1b 19768 lssintcl 20332 lbsextlem2 20527 lbsextlem3 20528 cssmre 21004 topgele 22185 topontopn 22195 unitg 22223 fctop 22260 cctop 22262 ppttop 22263 epttop 22265 mretopd 22349 resttopon 22418 ordtuni 22447 conncompcld 22691 islocfin 22774 kgentopon 22795 txuni2 22822 ptuni2 22833 ptbasfi 22838 xkouni 22856 prdstopn 22885 txdis 22889 txcmplem2 22899 xkococnlem 22916 qtoptop2 22956 qtopuni 22959 tgqtop 22969 opnfbas 23099 neifil 23137 filunibas 23138 trfil1 23143 flimfil 23226 cldsubg 23368 tgpconncompeqg 23369 tgpconncomp 23370 tsmsxplem1 23410 utoptop 23492 unirnblps 23678 unirnbl 23679 setsmstopn 23739 tngtopn 23920 bndth 24227 bcthlem5 24598 ovolficcss 24739 ovollb 24749 voliunlem2 24821 voliunlem3 24822 uniioovol 24849 uniioombl 24859 opnmbllem 24871 ubthlem1 29520 hsupcl 29989 hsupss 29991 hsupunss 29993 hsupval2 30059 fnpreimac 31295 unicls 32151 pwsiga 32396 sigainb 32402 insiga 32403 pwldsys 32423 ddemeas 32502 omssubadd 32567 cvmsss2 33535 dfon2lem2 34043 ntruni 34612 clsint2 34614 neibastop1 34644 neibastop2lem 34645 neibastop3 34647 topmeet 34649 topjoin 34650 fnemeet1 34651 fnemeet2 34652 fnejoin1 34653 opnmbllem0 35926 heiborlem1 36082 elrfi 40786 pwpwuni 42934 0ome 44413 |
Copyright terms: Public domain | W3C validator |