Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4544 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
2 | 1 | ralbii 3093 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
3 | dfss3 3914 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
4 | unissb 4879 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2104 ∀wral 3062 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-v 3439 df-in 3899 df-ss 3909 df-pw 4541 df-uni 4845 |
This theorem is referenced by: pwssb 5037 elpwpw 5038 elpwuni 5041 intss2 5044 rintn0 5045 dftr4 5205 uniixp 8740 fipwss 9232 dffi3 9234 uniwf 9621 numacn 9851 dfac12lem2 9946 fin23lem32 10146 isf34lem4 10179 isf34lem5 10180 fin1a2lem12 10213 itunitc1 10222 fpwwe2lem11 10443 tsksuc 10564 unirnioo 13227 restid 17189 mrcuni 17375 isacs3lem 18305 dmdprdd 19647 dprdfeq0 19670 dprdres 19676 dprdss 19677 dprdz 19678 subgdmdprd 19682 subgdprd 19683 dprd2dlem1 19689 dprd2da 19690 dmdprdsplit2lem 19693 ablfac1b 19718 lssintcl 20271 lbsextlem2 20466 lbsextlem3 20467 cssmre 20943 topgele 22124 topontopn 22134 unitg 22162 fctop 22199 cctop 22201 ppttop 22202 epttop 22204 mretopd 22288 resttopon 22357 ordtuni 22386 conncompcld 22630 islocfin 22713 kgentopon 22734 txuni2 22761 ptuni2 22772 ptbasfi 22777 xkouni 22795 prdstopn 22824 txdis 22828 txcmplem2 22838 xkococnlem 22855 qtoptop2 22895 qtopuni 22898 tgqtop 22908 opnfbas 23038 neifil 23076 filunibas 23077 trfil1 23082 flimfil 23165 cldsubg 23307 tgpconncompeqg 23308 tgpconncomp 23309 tsmsxplem1 23349 utoptop 23431 unirnblps 23617 unirnbl 23618 setsmstopn 23678 tngtopn 23859 bndth 24166 bcthlem5 24537 ovolficcss 24678 ovollb 24688 voliunlem2 24760 voliunlem3 24761 uniioovol 24788 uniioombl 24798 opnmbllem 24810 ubthlem1 29277 hsupcl 29746 hsupss 29748 hsupunss 29750 hsupval2 29816 fnpreimac 31053 unicls 31898 pwsiga 32143 sigainb 32149 insiga 32150 pwldsys 32170 ddemeas 32249 omssubadd 32312 cvmsss2 33281 dfon2lem2 33805 ntruni 34561 clsint2 34563 neibastop1 34593 neibastop2lem 34594 neibastop3 34596 topmeet 34598 topjoin 34599 fnemeet1 34600 fnemeet2 34601 fnejoin1 34602 opnmbllem0 35857 heiborlem1 36013 elrfi 40553 pwpwuni 42643 0ome 44117 |
Copyright terms: Public domain | W3C validator |