| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4554 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3079 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3919 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4891 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2113 ∀wral 3048 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-pw 4551 df-uni 4859 |
| This theorem is referenced by: pwssb 5051 elpwpw 5052 elpwuni 5055 intss2 5058 rintn0 5059 dftr4 5206 uniixp 8851 fipwss 9320 dffi3 9322 uniwf 9719 numacn 9947 dfac12lem2 10043 fin23lem32 10242 isf34lem4 10275 isf34lem5 10276 fin1a2lem12 10309 itunitc1 10318 fpwwe2lem11 10539 tsksuc 10660 unirnioo 13351 restid 17339 mrcuni 17529 isacs3lem 18450 dmdprdd 19915 dprdfeq0 19938 dprdres 19944 dprdss 19945 dprdz 19946 subgdmdprd 19950 subgdprd 19951 dprd2dlem1 19957 dprd2da 19958 dmdprdsplit2lem 19961 ablfac1b 19986 lssintcl 20899 lbsextlem2 21098 lbsextlem3 21099 cssmre 21632 topgele 22846 topontopn 22856 unitg 22883 fctop 22920 cctop 22922 ppttop 22923 epttop 22925 mretopd 23008 resttopon 23077 ordtuni 23106 conncompcld 23350 islocfin 23433 kgentopon 23454 txuni2 23481 ptuni2 23492 ptbasfi 23497 xkouni 23515 prdstopn 23544 txdis 23548 txcmplem2 23558 xkococnlem 23575 qtoptop2 23615 qtopuni 23618 tgqtop 23628 opnfbas 23758 neifil 23796 filunibas 23797 trfil1 23802 flimfil 23885 cldsubg 24027 tgpconncompeqg 24028 tgpconncomp 24029 tsmsxplem1 24069 utoptop 24150 unirnblps 24335 unirnbl 24336 setsmstopn 24394 tngtopn 24566 bndth 24885 bcthlem5 25256 ovolficcss 25398 ovollb 25408 voliunlem2 25480 voliunlem3 25481 uniioovol 25508 uniioombl 25518 opnmbllem 25530 ubthlem1 30852 hsupcl 31321 hsupss 31323 hsupunss 31325 hsupval2 31391 fnpreimac 32655 unicls 33937 pwsiga 34164 sigainb 34170 insiga 34171 pwldsys 34191 ddemeas 34270 omssubadd 34334 cvmsss2 35339 dfon2lem2 35847 ntruni 36392 clsint2 36394 neibastop1 36424 neibastop2lem 36425 neibastop3 36427 topmeet 36429 topjoin 36430 fnemeet1 36431 fnemeet2 36432 fnejoin1 36433 opnmbllem0 37716 heiborlem1 37871 elrfi 42811 pwpwuni 45178 0ome 46651 |
| Copyright terms: Public domain | W3C validator |