Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4543 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
2 | 1 | ralbii 3092 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
3 | dfss3 3913 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
4 | unissb 4878 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2109 ∀wral 3065 ⊆ wss 3891 𝒫 cpw 4538 ∪ cuni 4844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-in 3898 df-ss 3908 df-pw 4540 df-uni 4845 |
This theorem is referenced by: pwssb 5034 elpwpw 5035 elpwuni 5038 intss2 5041 rintn0 5042 dftr4 5200 uniixp 8683 fipwss 9149 dffi3 9151 uniwf 9561 numacn 9789 dfac12lem2 9884 fin23lem32 10084 isf34lem4 10117 isf34lem5 10118 fin1a2lem12 10151 itunitc1 10160 fpwwe2lem11 10381 tsksuc 10502 unirnioo 13163 restid 17125 mrcuni 17311 isacs3lem 18241 dmdprdd 19583 dprdfeq0 19606 dprdres 19612 dprdss 19613 dprdz 19614 subgdmdprd 19618 subgdprd 19619 dprd2dlem1 19625 dprd2da 19626 dmdprdsplit2lem 19629 ablfac1b 19654 lssintcl 20207 lbsextlem2 20402 lbsextlem3 20403 cssmre 20879 topgele 22060 topontopn 22070 unitg 22098 fctop 22135 cctop 22137 ppttop 22138 epttop 22140 mretopd 22224 resttopon 22293 ordtuni 22322 conncompcld 22566 islocfin 22649 kgentopon 22670 txuni2 22697 ptuni2 22708 ptbasfi 22713 xkouni 22731 prdstopn 22760 txdis 22764 txcmplem2 22774 xkococnlem 22791 qtoptop2 22831 qtopuni 22834 tgqtop 22844 opnfbas 22974 neifil 23012 filunibas 23013 trfil1 23018 flimfil 23101 cldsubg 23243 tgpconncompeqg 23244 tgpconncomp 23245 tsmsxplem1 23285 utoptop 23367 unirnblps 23553 unirnbl 23554 setsmstopn 23614 tngtopn 23795 bndth 24102 bcthlem5 24473 ovolficcss 24614 ovollb 24624 voliunlem2 24696 voliunlem3 24697 uniioovol 24724 uniioombl 24734 opnmbllem 24746 ubthlem1 29211 hsupcl 29680 hsupss 29682 hsupunss 29684 hsupval2 29750 fnpreimac 30987 unicls 31832 pwsiga 32077 sigainb 32083 insiga 32084 pwldsys 32104 ddemeas 32183 omssubadd 32246 cvmsss2 33215 dfon2lem2 33739 ntruni 34495 clsint2 34497 neibastop1 34527 neibastop2lem 34528 neibastop3 34530 topmeet 34532 topjoin 34533 fnemeet1 34534 fnemeet2 34535 fnejoin1 34536 opnmbllem0 35792 heiborlem1 35948 elrfi 40496 pwpwuni 42558 0ome 44021 |
Copyright terms: Public domain | W3C validator |