| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4568 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3935 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4903 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-ss 3931 df-pw 4565 df-uni 4872 |
| This theorem is referenced by: pwssb 5065 elpwpw 5066 elpwuni 5069 intss2 5072 rintn0 5073 dftr4 5221 uniixp 8894 fipwss 9380 dffi3 9382 uniwf 9772 numacn 10002 dfac12lem2 10098 fin23lem32 10297 isf34lem4 10330 isf34lem5 10331 fin1a2lem12 10364 itunitc1 10373 fpwwe2lem11 10594 tsksuc 10715 unirnioo 13410 restid 17396 mrcuni 17582 isacs3lem 18501 dmdprdd 19931 dprdfeq0 19954 dprdres 19960 dprdss 19961 dprdz 19962 subgdmdprd 19966 subgdprd 19967 dprd2dlem1 19973 dprd2da 19974 dmdprdsplit2lem 19977 ablfac1b 20002 lssintcl 20870 lbsextlem2 21069 lbsextlem3 21070 cssmre 21602 topgele 22817 topontopn 22827 unitg 22854 fctop 22891 cctop 22893 ppttop 22894 epttop 22896 mretopd 22979 resttopon 23048 ordtuni 23077 conncompcld 23321 islocfin 23404 kgentopon 23425 txuni2 23452 ptuni2 23463 ptbasfi 23468 xkouni 23486 prdstopn 23515 txdis 23519 txcmplem2 23529 xkococnlem 23546 qtoptop2 23586 qtopuni 23589 tgqtop 23599 opnfbas 23729 neifil 23767 filunibas 23768 trfil1 23773 flimfil 23856 cldsubg 23998 tgpconncompeqg 23999 tgpconncomp 24000 tsmsxplem1 24040 utoptop 24122 unirnblps 24307 unirnbl 24308 setsmstopn 24366 tngtopn 24538 bndth 24857 bcthlem5 25228 ovolficcss 25370 ovollb 25380 voliunlem2 25452 voliunlem3 25453 uniioovol 25480 uniioombl 25490 opnmbllem 25502 ubthlem1 30799 hsupcl 31268 hsupss 31270 hsupunss 31272 hsupval2 31338 fnpreimac 32595 unicls 33893 pwsiga 34120 sigainb 34126 insiga 34127 pwldsys 34147 ddemeas 34226 omssubadd 34291 cvmsss2 35261 dfon2lem2 35772 ntruni 36315 clsint2 36317 neibastop1 36347 neibastop2lem 36348 neibastop3 36350 topmeet 36352 topjoin 36353 fnemeet1 36354 fnemeet2 36355 fnejoin1 36356 opnmbllem0 37650 heiborlem1 37805 elrfi 42682 pwpwuni 45051 0ome 46527 |
| Copyright terms: Public domain | W3C validator |