| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4555 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3078 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3923 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4891 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 ∀wral 3047 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-pw 4552 df-uni 4860 |
| This theorem is referenced by: pwssb 5049 elpwpw 5050 elpwuni 5053 intss2 5056 rintn0 5057 dftr4 5204 uniixp 8845 fipwss 9313 dffi3 9315 uniwf 9709 numacn 9937 dfac12lem2 10033 fin23lem32 10232 isf34lem4 10265 isf34lem5 10266 fin1a2lem12 10299 itunitc1 10308 fpwwe2lem11 10529 tsksuc 10650 unirnioo 13346 restid 17334 mrcuni 17524 isacs3lem 18445 dmdprdd 19911 dprdfeq0 19934 dprdres 19940 dprdss 19941 dprdz 19942 subgdmdprd 19946 subgdprd 19947 dprd2dlem1 19953 dprd2da 19954 dmdprdsplit2lem 19957 ablfac1b 19982 lssintcl 20895 lbsextlem2 21094 lbsextlem3 21095 cssmre 21628 topgele 22843 topontopn 22853 unitg 22880 fctop 22917 cctop 22919 ppttop 22920 epttop 22922 mretopd 23005 resttopon 23074 ordtuni 23103 conncompcld 23347 islocfin 23430 kgentopon 23451 txuni2 23478 ptuni2 23489 ptbasfi 23494 xkouni 23512 prdstopn 23541 txdis 23545 txcmplem2 23555 xkococnlem 23572 qtoptop2 23612 qtopuni 23615 tgqtop 23625 opnfbas 23755 neifil 23793 filunibas 23794 trfil1 23799 flimfil 23882 cldsubg 24024 tgpconncompeqg 24025 tgpconncomp 24026 tsmsxplem1 24066 utoptop 24147 unirnblps 24332 unirnbl 24333 setsmstopn 24391 tngtopn 24563 bndth 24882 bcthlem5 25253 ovolficcss 25395 ovollb 25405 voliunlem2 25477 voliunlem3 25478 uniioovol 25505 uniioombl 25515 opnmbllem 25527 ubthlem1 30845 hsupcl 31314 hsupss 31316 hsupunss 31318 hsupval2 31384 fnpreimac 32648 unicls 33911 pwsiga 34138 sigainb 34144 insiga 34145 pwldsys 34165 ddemeas 34244 omssubadd 34308 cvmsss2 35306 dfon2lem2 35817 ntruni 36360 clsint2 36362 neibastop1 36392 neibastop2lem 36393 neibastop3 36395 topmeet 36397 topjoin 36398 fnemeet1 36399 fnemeet2 36400 fnejoin1 36401 opnmbllem0 37695 heiborlem1 37850 elrfi 42726 pwpwuni 45093 0ome 46566 |
| Copyright terms: Public domain | W3C validator |