![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4610 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
2 | 1 | ralbii 3091 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
3 | dfss3 3984 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
4 | unissb 4944 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-v 3480 df-ss 3980 df-pw 4607 df-uni 4913 |
This theorem is referenced by: pwssb 5106 elpwpw 5107 elpwuni 5110 intss2 5113 rintn0 5114 dftr4 5272 uniixp 8960 fipwss 9467 dffi3 9469 uniwf 9857 numacn 10087 dfac12lem2 10183 fin23lem32 10382 isf34lem4 10415 isf34lem5 10416 fin1a2lem12 10449 itunitc1 10458 fpwwe2lem11 10679 tsksuc 10800 unirnioo 13486 restid 17480 mrcuni 17666 isacs3lem 18600 dmdprdd 20034 dprdfeq0 20057 dprdres 20063 dprdss 20064 dprdz 20065 subgdmdprd 20069 subgdprd 20070 dprd2dlem1 20076 dprd2da 20077 dmdprdsplit2lem 20080 ablfac1b 20105 lssintcl 20980 lbsextlem2 21179 lbsextlem3 21180 cssmre 21729 topgele 22952 topontopn 22962 unitg 22990 fctop 23027 cctop 23029 ppttop 23030 epttop 23032 mretopd 23116 resttopon 23185 ordtuni 23214 conncompcld 23458 islocfin 23541 kgentopon 23562 txuni2 23589 ptuni2 23600 ptbasfi 23605 xkouni 23623 prdstopn 23652 txdis 23656 txcmplem2 23666 xkococnlem 23683 qtoptop2 23723 qtopuni 23726 tgqtop 23736 opnfbas 23866 neifil 23904 filunibas 23905 trfil1 23910 flimfil 23993 cldsubg 24135 tgpconncompeqg 24136 tgpconncomp 24137 tsmsxplem1 24177 utoptop 24259 unirnblps 24445 unirnbl 24446 setsmstopn 24506 tngtopn 24687 bndth 25004 bcthlem5 25376 ovolficcss 25518 ovollb 25528 voliunlem2 25600 voliunlem3 25601 uniioovol 25628 uniioombl 25638 opnmbllem 25650 ubthlem1 30899 hsupcl 31368 hsupss 31370 hsupunss 31372 hsupval2 31438 fnpreimac 32688 unicls 33864 pwsiga 34111 sigainb 34117 insiga 34118 pwldsys 34138 ddemeas 34217 omssubadd 34282 cvmsss2 35259 dfon2lem2 35766 ntruni 36310 clsint2 36312 neibastop1 36342 neibastop2lem 36343 neibastop3 36345 topmeet 36347 topjoin 36348 fnemeet1 36349 fnemeet2 36350 fnejoin1 36351 opnmbllem0 37643 heiborlem1 37798 elrfi 42682 pwpwuni 44997 0ome 46485 |
Copyright terms: Public domain | W3C validator |