| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4580 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3947 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4915 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3051 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-ss 3943 df-pw 4577 df-uni 4884 |
| This theorem is referenced by: pwssb 5077 elpwpw 5078 elpwuni 5081 intss2 5084 rintn0 5085 dftr4 5236 uniixp 8935 fipwss 9441 dffi3 9443 uniwf 9833 numacn 10063 dfac12lem2 10159 fin23lem32 10358 isf34lem4 10391 isf34lem5 10392 fin1a2lem12 10425 itunitc1 10434 fpwwe2lem11 10655 tsksuc 10776 unirnioo 13466 restid 17447 mrcuni 17633 isacs3lem 18552 dmdprdd 19982 dprdfeq0 20005 dprdres 20011 dprdss 20012 dprdz 20013 subgdmdprd 20017 subgdprd 20018 dprd2dlem1 20024 dprd2da 20025 dmdprdsplit2lem 20028 ablfac1b 20053 lssintcl 20921 lbsextlem2 21120 lbsextlem3 21121 cssmre 21653 topgele 22868 topontopn 22878 unitg 22905 fctop 22942 cctop 22944 ppttop 22945 epttop 22947 mretopd 23030 resttopon 23099 ordtuni 23128 conncompcld 23372 islocfin 23455 kgentopon 23476 txuni2 23503 ptuni2 23514 ptbasfi 23519 xkouni 23537 prdstopn 23566 txdis 23570 txcmplem2 23580 xkococnlem 23597 qtoptop2 23637 qtopuni 23640 tgqtop 23650 opnfbas 23780 neifil 23818 filunibas 23819 trfil1 23824 flimfil 23907 cldsubg 24049 tgpconncompeqg 24050 tgpconncomp 24051 tsmsxplem1 24091 utoptop 24173 unirnblps 24358 unirnbl 24359 setsmstopn 24417 tngtopn 24589 bndth 24908 bcthlem5 25280 ovolficcss 25422 ovollb 25432 voliunlem2 25504 voliunlem3 25505 uniioovol 25532 uniioombl 25542 opnmbllem 25554 ubthlem1 30851 hsupcl 31320 hsupss 31322 hsupunss 31324 hsupval2 31390 fnpreimac 32649 unicls 33934 pwsiga 34161 sigainb 34167 insiga 34168 pwldsys 34188 ddemeas 34267 omssubadd 34332 cvmsss2 35296 dfon2lem2 35802 ntruni 36345 clsint2 36347 neibastop1 36377 neibastop2lem 36378 neibastop3 36380 topmeet 36382 topjoin 36383 fnemeet1 36384 fnemeet2 36385 fnejoin1 36386 opnmbllem0 37680 heiborlem1 37835 elrfi 42717 pwpwuni 45081 0ome 46558 |
| Copyright terms: Public domain | W3C validator |