![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version |
Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | velpw 4627 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
2 | 1 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
3 | dfss3 3997 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
4 | unissb 4963 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-pw 4624 df-uni 4932 |
This theorem is referenced by: pwssb 5124 elpwpw 5125 elpwuni 5128 intss2 5131 rintn0 5132 dftr4 5290 uniixp 8979 fipwss 9498 dffi3 9500 uniwf 9888 numacn 10118 dfac12lem2 10214 fin23lem32 10413 isf34lem4 10446 isf34lem5 10447 fin1a2lem12 10480 itunitc1 10489 fpwwe2lem11 10710 tsksuc 10831 unirnioo 13509 restid 17493 mrcuni 17679 isacs3lem 18612 dmdprdd 20043 dprdfeq0 20066 dprdres 20072 dprdss 20073 dprdz 20074 subgdmdprd 20078 subgdprd 20079 dprd2dlem1 20085 dprd2da 20086 dmdprdsplit2lem 20089 ablfac1b 20114 lssintcl 20985 lbsextlem2 21184 lbsextlem3 21185 cssmre 21734 topgele 22957 topontopn 22967 unitg 22995 fctop 23032 cctop 23034 ppttop 23035 epttop 23037 mretopd 23121 resttopon 23190 ordtuni 23219 conncompcld 23463 islocfin 23546 kgentopon 23567 txuni2 23594 ptuni2 23605 ptbasfi 23610 xkouni 23628 prdstopn 23657 txdis 23661 txcmplem2 23671 xkococnlem 23688 qtoptop2 23728 qtopuni 23731 tgqtop 23741 opnfbas 23871 neifil 23909 filunibas 23910 trfil1 23915 flimfil 23998 cldsubg 24140 tgpconncompeqg 24141 tgpconncomp 24142 tsmsxplem1 24182 utoptop 24264 unirnblps 24450 unirnbl 24451 setsmstopn 24511 tngtopn 24692 bndth 25009 bcthlem5 25381 ovolficcss 25523 ovollb 25533 voliunlem2 25605 voliunlem3 25606 uniioovol 25633 uniioombl 25643 opnmbllem 25655 ubthlem1 30902 hsupcl 31371 hsupss 31373 hsupunss 31375 hsupval2 31441 fnpreimac 32689 unicls 33849 pwsiga 34094 sigainb 34100 insiga 34101 pwldsys 34121 ddemeas 34200 omssubadd 34265 cvmsss2 35242 dfon2lem2 35748 ntruni 36293 clsint2 36295 neibastop1 36325 neibastop2lem 36326 neibastop3 36328 topmeet 36330 topjoin 36331 fnemeet1 36332 fnemeet2 36333 fnejoin1 36334 opnmbllem0 37616 heiborlem1 37771 elrfi 42650 pwpwuni 44959 0ome 46450 |
Copyright terms: Public domain | W3C validator |