| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sspwuni | Structured version Visualization version GIF version | ||
| Description: Subclass relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
| Ref | Expression |
|---|---|
| sspwuni | ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velpw 4558 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐵 ↔ 𝑥 ⊆ 𝐵) | |
| 2 | 1 | ralbii 3075 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) |
| 3 | dfss3 3926 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ∈ 𝒫 𝐵) | |
| 4 | unissb 4893 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐵) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 ∀wral 3044 ⊆ wss 3905 𝒫 cpw 4553 ∪ cuni 4861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3440 df-ss 3922 df-pw 4555 df-uni 4862 |
| This theorem is referenced by: pwssb 5053 elpwpw 5054 elpwuni 5057 intss2 5060 rintn0 5061 dftr4 5208 uniixp 8855 fipwss 9338 dffi3 9340 uniwf 9734 numacn 9962 dfac12lem2 10058 fin23lem32 10257 isf34lem4 10290 isf34lem5 10291 fin1a2lem12 10324 itunitc1 10333 fpwwe2lem11 10554 tsksuc 10675 unirnioo 13370 restid 17355 mrcuni 17545 isacs3lem 18466 dmdprdd 19898 dprdfeq0 19921 dprdres 19927 dprdss 19928 dprdz 19929 subgdmdprd 19933 subgdprd 19934 dprd2dlem1 19940 dprd2da 19941 dmdprdsplit2lem 19944 ablfac1b 19969 lssintcl 20885 lbsextlem2 21084 lbsextlem3 21085 cssmre 21618 topgele 22833 topontopn 22843 unitg 22870 fctop 22907 cctop 22909 ppttop 22910 epttop 22912 mretopd 22995 resttopon 23064 ordtuni 23093 conncompcld 23337 islocfin 23420 kgentopon 23441 txuni2 23468 ptuni2 23479 ptbasfi 23484 xkouni 23502 prdstopn 23531 txdis 23535 txcmplem2 23545 xkococnlem 23562 qtoptop2 23602 qtopuni 23605 tgqtop 23615 opnfbas 23745 neifil 23783 filunibas 23784 trfil1 23789 flimfil 23872 cldsubg 24014 tgpconncompeqg 24015 tgpconncomp 24016 tsmsxplem1 24056 utoptop 24138 unirnblps 24323 unirnbl 24324 setsmstopn 24382 tngtopn 24554 bndth 24873 bcthlem5 25244 ovolficcss 25386 ovollb 25396 voliunlem2 25468 voliunlem3 25469 uniioovol 25496 uniioombl 25506 opnmbllem 25518 ubthlem1 30832 hsupcl 31301 hsupss 31303 hsupunss 31305 hsupval2 31371 fnpreimac 32628 unicls 33869 pwsiga 34096 sigainb 34102 insiga 34103 pwldsys 34123 ddemeas 34202 omssubadd 34267 cvmsss2 35246 dfon2lem2 35757 ntruni 36300 clsint2 36302 neibastop1 36332 neibastop2lem 36333 neibastop3 36335 topmeet 36337 topjoin 36338 fnemeet1 36339 fnemeet2 36340 fnejoin1 36341 opnmbllem0 37635 heiborlem1 37790 elrfi 42667 pwpwuni 45035 0ome 46511 |
| Copyright terms: Public domain | W3C validator |