Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem1 Structured version   Visualization version   GIF version

Theorem dfon2lem1 33030
Description: Lemma for dfon2 33039. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}

Proof of Theorem dfon2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 truni 5188 . 2 (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}Tr 𝑦 → Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)})
2 nfsbc1v 3794 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 nfv 1915 . . . . 5 𝑥Tr 𝑦
4 nfsbc1v 3794 . . . . 5 𝑥[𝑦 / 𝑥]𝜓
52, 3, 4nf3an 1902 . . . 4 𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)
6 vex 3499 . . . 4 𝑦 ∈ V
7 sbceq1a 3785 . . . . 5 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
8 treq 5180 . . . . 5 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
9 sbceq1a 3785 . . . . 5 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
107, 8, 93anbi123d 1432 . . . 4 (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)))
115, 6, 10elabf 3667 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓))
1211simp2bi 1142 . 2 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} → Tr 𝑦)
131, 12mprg 3154 1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}
Colors of variables: wff setvar class
Syntax hints:  w3a 1083  wcel 2114  {cab 2801  [wsbc 3774   cuni 4840  Tr wtr 5174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-v 3498  df-sbc 3775  df-in 3945  df-ss 3954  df-uni 4841  df-iun 4923  df-tr 5175
This theorem is referenced by:  dfon2lem3  33032  dfon2lem7  33036
  Copyright terms: Public domain W3C validator