Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfon2lem1 Structured version   Visualization version   GIF version

Theorem dfon2lem1 35778
Description: Lemma for dfon2 35787. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
dfon2lem1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}

Proof of Theorem dfon2lem1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 truni 5233 . 2 (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}Tr 𝑦 → Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)})
2 nfsbc1v 3776 . . . . 5 𝑥[𝑦 / 𝑥]𝜑
3 nfv 1914 . . . . 5 𝑥Tr 𝑦
4 nfsbc1v 3776 . . . . 5 𝑥[𝑦 / 𝑥]𝜓
52, 3, 4nf3an 1901 . . . 4 𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)
6 vex 3454 . . . 4 𝑦 ∈ V
7 sbceq1a 3767 . . . . 5 (𝑥 = 𝑦 → (𝜑[𝑦 / 𝑥]𝜑))
8 treq 5225 . . . . 5 (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦))
9 sbceq1a 3767 . . . . 5 (𝑥 = 𝑦 → (𝜓[𝑦 / 𝑥]𝜓))
107, 8, 93anbi123d 1438 . . . 4 (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓)))
115, 6, 10elabf 3645 . . 3 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦[𝑦 / 𝑥]𝜓))
1211simp2bi 1146 . 2 (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)} → Tr 𝑦)
131, 12mprg 3051 1 Tr {𝑥 ∣ (𝜑 ∧ Tr 𝑥𝜓)}
Colors of variables: wff setvar class
Syntax hints:  w3a 1086  wcel 2109  {cab 2708  [wsbc 3756   cuni 4874  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-v 3452  df-sbc 3757  df-ss 3934  df-uni 4875  df-iun 4960  df-tr 5218
This theorem is referenced by:  dfon2lem3  35780  dfon2lem7  35784
  Copyright terms: Public domain W3C validator