Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem1 | Structured version Visualization version GIF version |
Description: Lemma for dfon2 33817. (Contributed by Scott Fenton, 28-Feb-2011.) |
Ref | Expression |
---|---|
dfon2lem1 | ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | truni 5214 | . 2 ⊢ (∀𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)}Tr 𝑦 → Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)}) | |
2 | nfsbc1v 3741 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | |
3 | nfv 1915 | . . . . 5 ⊢ Ⅎ𝑥Tr 𝑦 | |
4 | nfsbc1v 3741 | . . . . 5 ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜓 | |
5 | 2, 3, 4 | nf3an 1902 | . . . 4 ⊢ Ⅎ𝑥([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓) |
6 | vex 3441 | . . . 4 ⊢ 𝑦 ∈ V | |
7 | sbceq1a 3732 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
8 | treq 5206 | . . . . 5 ⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | |
9 | sbceq1a 3732 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ [𝑦 / 𝑥]𝜓)) | |
10 | 7, 8, 9 | 3anbi123d 1436 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝜑 ∧ Tr 𝑥 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓))) |
11 | 5, 6, 10 | elabf 3611 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} ↔ ([𝑦 / 𝑥]𝜑 ∧ Tr 𝑦 ∧ [𝑦 / 𝑥]𝜓)) |
12 | 11 | simp2bi 1146 | . 2 ⊢ (𝑦 ∈ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} → Tr 𝑦) |
13 | 1, 12 | mprg 3068 | 1 ⊢ Tr ∪ {𝑥 ∣ (𝜑 ∧ Tr 𝑥 ∧ 𝜓)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1087 ∈ wcel 2104 {cab 2713 [wsbc 3721 ∪ cuni 4844 Tr wtr 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ral 3063 df-rex 3072 df-v 3439 df-sbc 3722 df-in 3899 df-ss 3909 df-uni 4845 df-iun 4933 df-tr 5199 |
This theorem is referenced by: dfon2lem3 33810 dfon2lem7 33814 |
Copyright terms: Public domain | W3C validator |