| Step | Hyp | Ref
| Expression |
| 1 | | elequ1 2116 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡)) |
| 2 | | elequ2 2124 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
| 3 | 1, 2 | bitrd 279 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
| 4 | 3 | notbid 318 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧)) |
| 5 | 4 | cbvralvw 3224 |
. . . . . . . . . . . . 13
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 6 | 5 | biimpi 216 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 7 | 6 | ralimi 3074 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 8 | | untuni 35731 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
| 9 | 7, 8 | sylibr 234 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧) |
| 10 | | vex 3468 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 11 | | sseq1 3989 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
| 12 | | treq 5242 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (Tr 𝑤 ↔ Tr 𝑥)) |
| 13 | | raleq 3306 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) |
| 14 | 11, 12, 13 | 3anbi123d 1438 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)))) |
| 15 | 10, 14 | elab 3663 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) |
| 16 | | vex 3468 |
. . . . . . . . . . . . . . . 16
⊢ 𝑡 ∈ V |
| 17 | | dfon2lem3 35808 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ V → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢))) |
| 18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢)) |
| 19 | 18 | simprd 495 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢) |
| 20 | | untelirr 35730 |
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑡 ¬ 𝑢 ∈ 𝑢 → ¬ 𝑡 ∈ 𝑡) |
| 21 | 19, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ¬ 𝑡 ∈ 𝑡) |
| 22 | 21 | ralimi 3074 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
| 23 | 22 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
| 24 | 15, 23 | sylbi 217 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
| 25 | 9, 24 | mprg 3058 |
. . . . . . . . 9
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 |
| 26 | | untelirr 35730 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
| 27 | | psseq2 4071 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑢 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑢)) |
| 28 | 27 | anbi1d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) |
| 29 | | elequ2 2124 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑢)) |
| 30 | 28, 29 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑢 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 31 | 30 | albidv 1920 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑢 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 32 | 31 | cbvralvw 3224 |
. . . . . . . . . . . . . 14
⊢
(∀𝑡 ∈
𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
| 33 | 32 | 3anbi3i 1159 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 34 | 33 | abbii 2803 |
. . . . . . . . . . . 12
⊢ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 35 | 34 | unieqi 4900 |
. . . . . . . . . . 11
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 36 | 35 | eleq2i 2827 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 37 | 26, 36 | sylnib 328 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 38 | 25, 37 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 39 | | dfon2lem7.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
| 40 | | dfon2lem2 35807 |
. . . . . . . . . 10
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 |
| 41 | 39, 40 | ssexi 5297 |
. . . . . . . . 9
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V |
| 42 | 41 | snss 4766 |
. . . . . . . 8
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 43 | 38, 42 | mtbi 322 |
. . . . . . 7
⊢ ¬
{∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 44 | 43 | intnan 486 |
. . . . . 6
⊢ ¬
(∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 45 | | df-suc 6363 |
. . . . . . . 8
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) |
| 46 | 45 | sseq1i 3992 |
. . . . . . 7
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 47 | | unss 4170 |
. . . . . . 7
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 48 | 46, 47 | bitr4i 278 |
. . . . . 6
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
| 49 | 44, 48 | mtbir 323 |
. . . . 5
⊢ ¬
suc ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 50 | 41 | snss 4766 |
. . . . . 6
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 ↔ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) |
| 51 | 45 | sseq1i 3992 |
. . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) |
| 52 | | unss 4170 |
. . . . . . . . 9
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) |
| 53 | 51, 52 | bitr4i 278 |
. . . . . . . 8
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴)) |
| 54 | | dfon2lem1 35806 |
. . . . . . . . . . . 12
⊢ Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} |
| 55 | | suctr 6445 |
. . . . . . . . . . . 12
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → Tr suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
| 56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Tr suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} |
| 57 | | vex 3468 |
. . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V |
| 58 | 57 | elsuc 6429 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 59 | | eluni2 4892 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥) |
| 60 | | nfa1 2152 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) |
| 61 | 31 | rspccv 3603 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 62 | | psseq1 4070 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (𝑦 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢)) |
| 63 | | treq 5242 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) |
| 64 | 62, 63 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑥 ⊊ 𝑢 ∧ Tr 𝑥))) |
| 65 | | elequ1 2116 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢)) |
| 66 | 64, 65 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 67 | 66 | cbvalvw 2036 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 68 | 61, 67 | imbitrdi 251 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 69 | 68 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 70 | 15, 69 | sylbi 217 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 71 | 60, 70 | rexlimi 3246 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 72 | 59, 71 | sylbi 217 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 73 | | psseq1 4070 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (𝑦 ⊊ 𝑢 ↔ 𝑧 ⊊ 𝑢)) |
| 74 | | treq 5242 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (Tr 𝑦 ↔ Tr 𝑧)) |
| 75 | 73, 74 | anbi12d 632 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑧 ⊊ 𝑢 ∧ Tr 𝑧))) |
| 76 | | elequ1 2116 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢)) |
| 77 | 75, 76 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
| 78 | 77 | cbvalvw 2036 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
| 79 | 61, 78 | imbitrdi 251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
| 80 | 79 | 3ad2ant3 1135 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
| 81 | 15, 80 | sylbi 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
| 82 | 81 | rexlimiv 3135 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
| 83 | 59, 82 | sylbi 217 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
| 84 | 83 | rgen 3054 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑢 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢) |
| 85 | | dfon2lem6 35811 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) → ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 86 | 54, 84, 85 | mp2an 692 |
. . . . . . . . . . . . . . 15
⊢
∀𝑥((𝑥 ⊊ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
| 87 | | psseq2 4071 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝑢 ↔ 𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 88 | 87 | anbi1d 631 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥))) |
| 89 | | eleq2 2824 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 90 | 88, 89 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
| 91 | 90 | albidv 1920 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
| 92 | 86, 91 | mpbiri 258 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 93 | 72, 92 | jaoi 857 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 94 | 58, 93 | sylbi 217 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
| 95 | 94 | rgen 3054 |
. . . . . . . . . . 11
⊢
∀𝑢 ∈ suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) |
| 96 | 41 | sucex 7805 |
. . . . . . . . . . . . 13
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V |
| 97 | | sseq1 3989 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑠 ⊆ 𝐴 ↔ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴)) |
| 98 | | treq 5242 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑠 ↔ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 99 | | raleq 3306 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 100 | 97, 98, 99 | 3anbi123d 1438 |
. . . . . . . . . . . . 13
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)))) |
| 101 | 96, 100 | elab 3663 |
. . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 102 | | elssuni 4918 |
. . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
| 103 | 101, 102 | sylbir 235 |
. . . . . . . . . . 11
⊢ ((suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
| 104 | 56, 95, 103 | mp3an23 1455 |
. . . . . . . . . 10
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
| 105 | | sseq1 3989 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (𝑠 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) |
| 106 | | treq 5242 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (Tr 𝑠 ↔ Tr 𝑤)) |
| 107 | | raleq 3306 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
| 108 | | psseq1 4070 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ⊊ 𝑢 ↔ 𝑦 ⊊ 𝑢)) |
| 109 | | treq 5242 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) |
| 110 | 108, 109 | anbi12d 632 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) |
| 111 | | elequ1 2116 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢)) |
| 112 | 110, 111 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 113 | 112 | cbvalvw 2036 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
| 114 | 113 | ralbii 3083 |
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
| 115 | 107, 114 | bitrdi 287 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
| 116 | 105, 106,
115 | 3anbi123d 1438 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)))) |
| 117 | 116 | cbvabv 2806 |
. . . . . . . . . . 11
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 118 | 117 | unieqi 4900 |
. . . . . . . . . 10
⊢ ∪ {𝑠
∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
| 119 | 104, 118 | sseqtrdi 4004 |
. . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
| 120 | 119 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
| 121 | 53, 120 | biimtrrid 243 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
| 122 | 40, 121 | mpani 696 |
. . . . . 6
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ({∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
| 123 | 50, 122 | biimtrid 242 |
. . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
| 124 | 49, 123 | mtoi 199 |
. . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴) |
| 125 | | psseq1 4070 |
. . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴)) |
| 126 | | treq 5242 |
. . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑥 ↔ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
| 127 | 125, 126 | anbi12d 632 |
. . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
| 128 | | eleq1 2823 |
. . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
| 129 | 127, 128 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ↔ ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴))) |
| 130 | 41, 129 | spcv 3589 |
. . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
| 131 | 54, 130 | mpan2i 697 |
. . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
| 132 | 124, 131 | mtod 198 |
. . 3
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
| 133 | | dfpss2 4068 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴)) |
| 134 | 133 | biimpri 228 |
. . . 4
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
| 135 | 40, 134 | mpan 690 |
. . 3
⊢ (¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
| 136 | 132, 135 | nsyl2 141 |
. 2
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) |
| 137 | | eluni2 4892 |
. . . . 5
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥) |
| 138 | | psseq2 4071 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑧)) |
| 139 | 138 | anbi1d 631 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑧 ∧ Tr 𝑦))) |
| 140 | | elequ2 2124 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑧)) |
| 141 | 139, 140 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 142 | 141 | albidv 1920 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 143 | 142 | cbvralvw 3224 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
| 144 | 13, 143 | bitrdi 287 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 145 | 11, 12, 144 | 3anbi123d 1438 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)))) |
| 146 | 10, 145 | elab 3663 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 147 | | rsp 3234 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 148 | 147 | 3ad2ant3 1135 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 149 | 146, 148 | sylbi 217 |
. . . . . 6
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 150 | 149 | rexlimiv 3135 |
. . . . 5
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
| 151 | 137, 150 | sylbi 217 |
. . . 4
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
| 152 | 151 | rgen 3054 |
. . 3
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) |
| 153 | | raleq 3306 |
. . 3
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → (∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
| 154 | 152, 153 | mpbii 233 |
. 2
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
| 155 | | psseq2 4071 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ⊊ 𝑧 ↔ 𝑦 ⊊ 𝐵)) |
| 156 | 155 | anbi1d 631 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝐵 ∧ Tr 𝑦))) |
| 157 | | eleq2 2824 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐵)) |
| 158 | 156, 157 | imbi12d 344 |
. . . 4
⊢ (𝑧 = 𝐵 → (((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
| 159 | 158 | albidv 1920 |
. . 3
⊢ (𝑧 = 𝐵 → (∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
| 160 | 159 | rspccv 3603 |
. 2
⊢
(∀𝑧 ∈
𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
| 161 | 136, 154,
160 | 3syl 18 |
1
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |