Step | Hyp | Ref
| Expression |
1 | | elequ1 2115 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡)) |
2 | | elequ2 2123 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
3 | 1, 2 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) |
4 | 3 | notbid 317 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧)) |
5 | 4 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
6 | 5 | biimpi 215 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
7 | 6 | ralimi 3086 |
. . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
8 | | untuni 33550 |
. . . . . . . . . . 11
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) |
9 | 7, 8 | sylibr 233 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧) |
10 | | vex 3426 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
11 | | sseq1 3942 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) |
12 | | treq 5193 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (Tr 𝑤 ↔ Tr 𝑥)) |
13 | | raleq 3333 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) |
14 | 11, 12, 13 | 3anbi123d 1434 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)))) |
15 | 10, 14 | elab 3602 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) |
16 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑡 ∈ V |
17 | | dfon2lem3 33667 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ V → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢))) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢)) |
19 | 18 | simprd 495 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢) |
20 | | untelirr 33549 |
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑡 ¬ 𝑢 ∈ 𝑢 → ¬ 𝑡 ∈ 𝑡) |
21 | 19, 20 | syl 17 |
. . . . . . . . . . . . 13
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ¬ 𝑡 ∈ 𝑡) |
22 | 21 | ralimi 3086 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
23 | 22 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
24 | 15, 23 | sylbi 216 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) |
25 | 9, 24 | mprg 3077 |
. . . . . . . . 9
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 |
26 | | untelirr 33549 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
27 | | psseq2 4019 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑢 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑢)) |
28 | 27 | anbi1d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) |
29 | | elequ2 2123 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑢)) |
30 | 28, 29 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑢 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
31 | 30 | albidv 1924 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑢 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
32 | 31 | cbvralvw 3372 |
. . . . . . . . . . . . . 14
⊢
(∀𝑡 ∈
𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
33 | 32 | 3anbi3i 1157 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
34 | 33 | abbii 2809 |
. . . . . . . . . . . 12
⊢ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
35 | 34 | unieqi 4849 |
. . . . . . . . . . 11
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
36 | 35 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
37 | 26, 36 | sylnib 327 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
38 | 25, 37 | ax-mp 5 |
. . . . . . . 8
⊢ ¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
39 | | dfon2lem7.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
40 | | dfon2lem2 33666 |
. . . . . . . . . 10
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 |
41 | 39, 40 | ssexi 5241 |
. . . . . . . . 9
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V |
42 | 41 | snss 4716 |
. . . . . . . 8
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
43 | 38, 42 | mtbi 321 |
. . . . . . 7
⊢ ¬
{∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
44 | 43 | intnan 486 |
. . . . . 6
⊢ ¬
(∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
45 | | df-suc 6257 |
. . . . . . . 8
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) |
46 | 45 | sseq1i 3945 |
. . . . . . 7
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
47 | | unss 4114 |
. . . . . . 7
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
48 | 46, 47 | bitr4i 277 |
. . . . . 6
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
49 | 44, 48 | mtbir 322 |
. . . . 5
⊢ ¬
suc ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
50 | 41 | snss 4716 |
. . . . . 6
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 ↔ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) |
51 | 45 | sseq1i 3945 |
. . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) |
52 | | unss 4114 |
. . . . . . . . 9
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) |
53 | 51, 52 | bitr4i 277 |
. . . . . . . 8
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴)) |
54 | | dfon2lem1 33665 |
. . . . . . . . . . . 12
⊢ Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} |
55 | | suctr 6334 |
. . . . . . . . . . . 12
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → Tr suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
56 | 54, 55 | ax-mp 5 |
. . . . . . . . . . 11
⊢ Tr suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} |
57 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V |
58 | 57 | elsuc 6320 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
59 | | eluni2 4840 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥) |
60 | | nfa1 2150 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) |
61 | 31 | rspccv 3549 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
62 | | psseq1 4018 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (𝑦 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢)) |
63 | | treq 5193 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) |
64 | 62, 63 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑥 ⊊ 𝑢 ∧ Tr 𝑥))) |
65 | | elequ1 2115 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢)) |
66 | 64, 65 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
67 | 66 | cbvalvw 2040 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
68 | 61, 67 | syl6ib 250 |
. . . . . . . . . . . . . . . . . 18
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
69 | 68 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
70 | 15, 69 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
71 | 60, 70 | rexlimi 3243 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
72 | 59, 71 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
73 | | psseq1 4018 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (𝑦 ⊊ 𝑢 ↔ 𝑧 ⊊ 𝑢)) |
74 | | treq 5193 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (Tr 𝑦 ↔ Tr 𝑧)) |
75 | 73, 74 | anbi12d 630 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑧 ⊊ 𝑢 ∧ Tr 𝑧))) |
76 | | elequ1 2115 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢)) |
77 | 75, 76 | imbi12d 344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
78 | 77 | cbvalvw 2040 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
79 | 61, 78 | syl6ib 250 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
80 | 79 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
81 | 15, 80 | sylbi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) |
82 | 81 | rexlimiv 3208 |
. . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
83 | 59, 82 | sylbi 216 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) |
84 | 83 | rgen 3073 |
. . . . . . . . . . . . . . . 16
⊢
∀𝑢 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢) |
85 | | dfon2lem6 33670 |
. . . . . . . . . . . . . . . 16
⊢ ((Tr
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) → ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
86 | 54, 84, 85 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢
∀𝑥((𝑥 ⊊ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) |
87 | | psseq2 4019 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝑢 ↔ 𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
88 | 87 | anbi1d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥))) |
89 | | eleq2 2827 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
90 | 88, 89 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
91 | 90 | albidv 1924 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
92 | 86, 91 | mpbiri 257 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
93 | 72, 92 | jaoi 853 |
. . . . . . . . . . . . 13
⊢ ((𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
94 | 58, 93 | sylbi 216 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) |
95 | 94 | rgen 3073 |
. . . . . . . . . . 11
⊢
∀𝑢 ∈ suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) |
96 | 41 | sucex 7633 |
. . . . . . . . . . . . 13
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V |
97 | | sseq1 3942 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑠 ⊆ 𝐴 ↔ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴)) |
98 | | treq 5193 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑠 ↔ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
99 | | raleq 3333 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
100 | 97, 98, 99 | 3anbi123d 1434 |
. . . . . . . . . . . . 13
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)))) |
101 | 96, 100 | elab 3602 |
. . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
102 | | elssuni 4868 |
. . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
103 | 101, 102 | sylbir 234 |
. . . . . . . . . . 11
⊢ ((suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
104 | 56, 95, 103 | mp3an23 1451 |
. . . . . . . . . 10
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) |
105 | | sseq1 3942 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (𝑠 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) |
106 | | treq 5193 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (Tr 𝑠 ↔ Tr 𝑤)) |
107 | | raleq 3333 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) |
108 | | psseq1 4018 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ⊊ 𝑢 ↔ 𝑦 ⊊ 𝑢)) |
109 | | treq 5193 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) |
110 | 108, 109 | anbi12d 630 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) |
111 | | elequ1 2115 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢)) |
112 | 110, 111 | imbi12d 344 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
113 | 112 | cbvalvw 2040 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
114 | 113 | ralbii 3090 |
. . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) |
115 | 107, 114 | bitrdi 286 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) |
116 | 105, 106,
115 | 3anbi123d 1434 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)))) |
117 | 116 | cbvabv 2812 |
. . . . . . . . . . 11
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
118 | 117 | unieqi 4849 |
. . . . . . . . . 10
⊢ ∪ {𝑠
∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} |
119 | 104, 118 | sseqtrdi 3967 |
. . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) |
120 | 119 | a1i 11 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
121 | 53, 120 | syl5bir 242 |
. . . . . . 7
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
122 | 40, 121 | mpani 692 |
. . . . . 6
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ({∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
123 | 50, 122 | syl5bi 241 |
. . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) |
124 | 49, 123 | mtoi 198 |
. . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴) |
125 | | psseq1 4018 |
. . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴)) |
126 | | treq 5193 |
. . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑥 ↔ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) |
127 | 125, 126 | anbi12d 630 |
. . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) |
128 | | eleq1 2826 |
. . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
129 | 127, 128 | imbi12d 344 |
. . . . . 6
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ↔ ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴))) |
130 | 41, 129 | spcv 3534 |
. . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
131 | 54, 130 | mpan2i 693 |
. . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) |
132 | 124, 131 | mtod 197 |
. . 3
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
133 | | dfpss2 4016 |
. . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴)) |
134 | 133 | biimpri 227 |
. . . 4
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
135 | 40, 134 | mpan 686 |
. . 3
⊢ (¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) |
136 | 132, 135 | nsyl2 141 |
. 2
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) |
137 | | eluni2 4840 |
. . . . 5
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥) |
138 | | psseq2 4019 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑧)) |
139 | 138 | anbi1d 629 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑧 ∧ Tr 𝑦))) |
140 | | elequ2 2123 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑧)) |
141 | 139, 140 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
142 | 141 | albidv 1924 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
143 | 142 | cbvralvw 3372 |
. . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
144 | 13, 143 | bitrdi 286 |
. . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
145 | 11, 12, 144 | 3anbi123d 1434 |
. . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)))) |
146 | 10, 145 | elab 3602 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
147 | | rsp 3129 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
148 | 147 | 3ad2ant3 1133 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
149 | 146, 148 | sylbi 216 |
. . . . . 6
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
150 | 149 | rexlimiv 3208 |
. . . . 5
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
151 | 137, 150 | sylbi 216 |
. . . 4
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
152 | 151 | rgen 3073 |
. . 3
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) |
153 | | raleq 3333 |
. . 3
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → (∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) |
154 | 152, 153 | mpbii 232 |
. 2
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) |
155 | | psseq2 4019 |
. . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ⊊ 𝑧 ↔ 𝑦 ⊊ 𝐵)) |
156 | 155 | anbi1d 629 |
. . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝐵 ∧ Tr 𝑦))) |
157 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = 𝐵 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐵)) |
158 | 156, 157 | imbi12d 344 |
. . . 4
⊢ (𝑧 = 𝐵 → (((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
159 | 158 | albidv 1924 |
. . 3
⊢ (𝑧 = 𝐵 → (∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
160 | 159 | rspccv 3549 |
. 2
⊢
(∀𝑧 ∈
𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |
161 | 136, 154,
160 | 3syl 18 |
1
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |