| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elequ1 2115 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑡)) | 
| 2 |  | elequ2 2123 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑧 → (𝑧 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) | 
| 3 | 1, 2 | bitrd 279 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑧 → (𝑡 ∈ 𝑡 ↔ 𝑧 ∈ 𝑧)) | 
| 4 | 3 | notbid 318 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (¬ 𝑡 ∈ 𝑡 ↔ ¬ 𝑧 ∈ 𝑧)) | 
| 5 | 4 | cbvralvw 3237 | . . . . . . . . . . . . 13
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 ↔ ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) | 
| 6 | 5 | biimpi 216 | . . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) | 
| 7 | 6 | ralimi 3083 | . . . . . . . . . . 11
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) | 
| 8 |  | untuni 35709 | . . . . . . . . . . 11
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 ↔ ∀𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧 ∈ 𝑥 ¬ 𝑧 ∈ 𝑧) | 
| 9 | 7, 8 | sylibr 234 | . . . . . . . . . 10
⊢
(∀𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡 → ∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧) | 
| 10 |  | vex 3484 | . . . . . . . . . . . 12
⊢ 𝑥 ∈ V | 
| 11 |  | sseq1 4009 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (𝑤 ⊆ 𝐴 ↔ 𝑥 ⊆ 𝐴)) | 
| 12 |  | treq 5267 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (Tr 𝑤 ↔ Tr 𝑥)) | 
| 13 |  | raleq 3323 | . . . . . . . . . . . . 13
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) | 
| 14 | 11, 12, 13 | 3anbi123d 1438 | . . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)))) | 
| 15 | 10, 14 | elab 3679 | . . . . . . . . . . 11
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))) | 
| 16 |  | vex 3484 | . . . . . . . . . . . . . . . 16
⊢ 𝑡 ∈ V | 
| 17 |  | dfon2lem3 35786 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ V → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢))) | 
| 18 | 16, 17 | ax-mp 5 | . . . . . . . . . . . . . . 15
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (Tr 𝑡 ∧ ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢)) | 
| 19 | 18 | simprd 495 | . . . . . . . . . . . . . 14
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑢 ∈ 𝑡 ¬ 𝑢 ∈ 𝑢) | 
| 20 |  | untelirr 35708 | . . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑡 ¬ 𝑢 ∈ 𝑢 → ¬ 𝑡 ∈ 𝑡) | 
| 21 | 19, 20 | syl 17 | . . . . . . . . . . . . 13
⊢
(∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ¬ 𝑡 ∈ 𝑡) | 
| 22 | 21 | ralimi 3083 | . . . . . . . . . . . 12
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) | 
| 23 | 22 | 3ad2ant3 1136 | . . . . . . . . . . 11
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) | 
| 24 | 15, 23 | sylbi 217 | . . . . . . . . . 10
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑡 ∈ 𝑥 ¬ 𝑡 ∈ 𝑡) | 
| 25 | 9, 24 | mprg 3067 | . . . . . . . . 9
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 | 
| 26 |  | untelirr 35708 | . . . . . . . . . 10
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) | 
| 27 |  | psseq2 4091 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑡 = 𝑢 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑢)) | 
| 28 | 27 | anbi1d 631 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) | 
| 29 |  | elequ2 2123 | . . . . . . . . . . . . . . . . 17
⊢ (𝑡 = 𝑢 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑢)) | 
| 30 | 28, 29 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑢 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 31 | 30 | albidv 1920 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑢 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 32 | 31 | cbvralvw 3237 | . . . . . . . . . . . . . 14
⊢
(∀𝑡 ∈
𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) | 
| 33 | 32 | 3anbi3i 1160 | . . . . . . . . . . . . 13
⊢ ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 34 | 33 | abbii 2809 | . . . . . . . . . . . 12
⊢ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 35 | 34 | unieqi 4919 | . . . . . . . . . . 11
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 36 | 35 | eleq2i 2833 | . . . . . . . . . 10
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 37 | 26, 36 | sylnib 328 | . . . . . . . . 9
⊢
(∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ¬ 𝑧 ∈ 𝑧 → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 38 | 25, 37 | ax-mp 5 | . . . . . . . 8
⊢  ¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 39 |  | dfon2lem7.1 | . . . . . . . . . 10
⊢ 𝐴 ∈ V | 
| 40 |  | dfon2lem2 35785 | . . . . . . . . . 10
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 | 
| 41 | 39, 40 | ssexi 5322 | . . . . . . . . 9
⊢ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V | 
| 42 | 41 | snss 4785 | . . . . . . . 8
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 43 | 38, 42 | mtbi 322 | . . . . . . 7
⊢  ¬
{∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 44 | 43 | intnan 486 | . . . . . 6
⊢  ¬
(∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 45 |  | df-suc 6390 | . . . . . . . 8
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) | 
| 46 | 45 | sseq1i 4012 | . . . . . . 7
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 47 |  | unss 4190 | . . . . . . 7
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 48 | 46, 47 | bitr4i 278 | . . . . . 6
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} ∧ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) | 
| 49 | 44, 48 | mtbir 323 | . . . . 5
⊢  ¬
suc ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 50 | 41 | snss 4785 | . . . . . 6
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 ↔ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) | 
| 51 | 45 | sseq1i 4012 | . . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) | 
| 52 |  | unss 4190 | . . . . . . . . 9
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) ↔ (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∪ {∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}}) ⊆ 𝐴) | 
| 53 | 51, 52 | bitr4i 278 | . . . . . . . 8
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴)) | 
| 54 |  | dfon2lem1 35784 | . . . . . . . . . . . 12
⊢ Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} | 
| 55 |  | suctr 6470 | . . . . . . . . . . . 12
⊢ (Tr ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → Tr suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) | 
| 56 | 54, 55 | ax-mp 5 | . . . . . . . . . . 11
⊢ Tr suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} | 
| 57 |  | vex 3484 | . . . . . . . . . . . . . 14
⊢ 𝑢 ∈ V | 
| 58 | 57 | elsuc 6454 | . . . . . . . . . . . . 13
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 59 |  | eluni2 4911 | . . . . . . . . . . . . . . 15
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥) | 
| 60 |  | nfa1 2151 | . . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑥∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) | 
| 61 | 31 | rspccv 3619 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 62 |  | psseq1 4090 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (𝑦 ⊊ 𝑢 ↔ 𝑥 ⊊ 𝑢)) | 
| 63 |  | treq 5267 | . . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 = 𝑥 → (Tr 𝑦 ↔ Tr 𝑥)) | 
| 64 | 62, 63 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑥 ⊊ 𝑢 ∧ Tr 𝑥))) | 
| 65 |  | elequ1 2115 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢)) | 
| 66 | 64, 65 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑥 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 67 | 66 | cbvalvw 2035 | . . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 68 | 61, 67 | imbitrdi 251 | . . . . . . . . . . . . . . . . . 18
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 69 | 68 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 70 | 15, 69 | sylbi 217 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 71 | 60, 70 | rexlimi 3259 | . . . . . . . . . . . . . . 15
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 72 | 59, 71 | sylbi 217 | . . . . . . . . . . . . . 14
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 73 |  | psseq1 4090 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (𝑦 ⊊ 𝑢 ↔ 𝑧 ⊊ 𝑢)) | 
| 74 |  | treq 5267 | . . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 = 𝑧 → (Tr 𝑦 ↔ Tr 𝑧)) | 
| 75 | 73, 74 | anbi12d 632 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) ↔ (𝑧 ⊊ 𝑢 ∧ Tr 𝑧))) | 
| 76 |  | elequ1 2115 | . . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑢 ↔ 𝑧 ∈ 𝑢)) | 
| 77 | 75, 76 | imbi12d 344 | . . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 = 𝑧 → (((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) | 
| 78 | 77 | cbvalvw 2035 | . . . . . . . . . . . . . . . . . . . . . 22
⊢
(∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢) ↔ ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) | 
| 79 | 61, 78 | imbitrdi 251 | . . . . . . . . . . . . . . . . . . . . 21
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) | 
| 80 | 79 | 3ad2ant3 1136 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑡 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) | 
| 81 | 15, 80 | sylbi 217 | . . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢))) | 
| 82 | 81 | rexlimiv 3148 | . . . . . . . . . . . . . . . . . 18
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑢 ∈ 𝑥 → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) | 
| 83 | 59, 82 | sylbi 217 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) | 
| 84 | 83 | rgen 3063 | . . . . . . . . . . . . . . . 16
⊢
∀𝑢 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢) | 
| 85 |  | dfon2lem6 35789 | . . . . . . . . . . . . . . . 16
⊢ ((Tr
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑧((𝑧 ⊊ 𝑢 ∧ Tr 𝑧) → 𝑧 ∈ 𝑢)) → ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 86 | 54, 84, 85 | mp2an 692 | . . . . . . . . . . . . . . 15
⊢
∀𝑥((𝑥 ⊊ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) | 
| 87 |  | psseq2 4091 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝑢 ↔ 𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 88 | 87 | anbi1d 631 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥))) | 
| 89 |  | eleq2 2830 | . . . . . . . . . . . . . . . . 17
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝑢 ↔ 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 90 | 88, 89 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) | 
| 91 | 90 | albidv 1920 | . . . . . . . . . . . . . . 15
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑥((𝑥 ⊊ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ Tr 𝑥) → 𝑥 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) | 
| 92 | 86, 91 | mpbiri 258 | . . . . . . . . . . . . . 14
⊢ (𝑢 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 93 | 72, 92 | jaoi 858 | . . . . . . . . . . . . 13
⊢ ((𝑢 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∨ 𝑢 = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 94 | 58, 93 | sylbi 217 | . . . . . . . . . . . 12
⊢ (𝑢 ∈ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) | 
| 95 | 94 | rgen 3063 | . . . . . . . . . . 11
⊢
∀𝑢 ∈ suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) | 
| 96 | 41 | sucex 7826 | . . . . . . . . . . . . 13
⊢ suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ V | 
| 97 |  | sseq1 4009 | . . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑠 ⊆ 𝐴 ↔ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴)) | 
| 98 |  | treq 5267 | . . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑠 ↔ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 99 |  | raleq 3323 | . . . . . . . . . . . . . 14
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 100 | 97, 98, 99 | 3anbi123d 1438 | . . . . . . . . . . . . 13
⊢ (𝑠 = suc ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)))) | 
| 101 | 96, 100 | elab 3679 | . . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} ↔ (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 102 |  | elssuni 4937 | . . . . . . . . . . . 12
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) | 
| 103 | 101, 102 | sylbir 235 | . . . . . . . . . . 11
⊢ ((suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ Tr suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∧ ∀𝑢 ∈ suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) | 
| 104 | 56, 95, 103 | mp3an23 1455 | . . . . . . . . . 10
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))}) | 
| 105 |  | sseq1 4009 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (𝑠 ⊆ 𝐴 ↔ 𝑤 ⊆ 𝐴)) | 
| 106 |  | treq 5267 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (Tr 𝑠 ↔ Tr 𝑤)) | 
| 107 |  | raleq 3323 | . . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))) | 
| 108 |  | psseq1 4090 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (𝑥 ⊊ 𝑢 ↔ 𝑦 ⊊ 𝑢)) | 
| 109 |  | treq 5267 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 𝑦 → (Tr 𝑥 ↔ Tr 𝑦)) | 
| 110 | 108, 109 | anbi12d 632 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → ((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) ↔ (𝑦 ⊊ 𝑢 ∧ Tr 𝑦))) | 
| 111 |  | elequ1 2115 | . . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝑢 ↔ 𝑦 ∈ 𝑢)) | 
| 112 | 110, 111 | imbi12d 344 | . . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑦 → (((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 113 | 112 | cbvalvw 2035 | . . . . . . . . . . . . . . 15
⊢
(∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) | 
| 114 | 113 | ralbii 3093 | . . . . . . . . . . . . . 14
⊢
(∀𝑢 ∈
𝑤 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)) | 
| 115 | 107, 114 | bitrdi 287 | . . . . . . . . . . . . 13
⊢ (𝑠 = 𝑤 → (∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢) ↔ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))) | 
| 116 | 105, 106,
115 | 3anbi123d 1438 | . . . . . . . . . . . 12
⊢ (𝑠 = 𝑤 → ((𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢)) ↔ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢)))) | 
| 117 | 116 | cbvabv 2812 | . . . . . . . . . . 11
⊢ {𝑠 ∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 118 | 117 | unieqi 4919 | . . . . . . . . . 10
⊢ ∪ {𝑠
∣ (𝑠 ⊆ 𝐴 ∧ Tr 𝑠 ∧ ∀𝑢 ∈ 𝑠 ∀𝑥((𝑥 ⊊ 𝑢 ∧ Tr 𝑥) → 𝑥 ∈ 𝑢))} = ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))} | 
| 119 | 104, 118 | sseqtrdi 4024 | . . . . . . . . 9
⊢ (suc
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))}) | 
| 120 | 119 | a1i 11 | . . . . . . . 8
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) | 
| 121 | 53, 120 | biimtrrid 243 | . . . . . . 7
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ {∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴) → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) | 
| 122 | 40, 121 | mpani 696 | . . . . . 6
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ({∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}} ⊆ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) | 
| 123 | 50, 122 | biimtrid 242 | . . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴 → suc ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑢 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑢 ∧ Tr 𝑦) → 𝑦 ∈ 𝑢))})) | 
| 124 | 49, 123 | mtoi 199 | . . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴) | 
| 125 |  | psseq1 4090 | . . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ⊊ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴)) | 
| 126 |  | treq 5267 | . . . . . . . 8
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (Tr 𝑥 ↔ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))})) | 
| 127 | 125, 126 | anbi12d 632 | . . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}))) | 
| 128 |  | eleq1 2829 | . . . . . . 7
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑥 ∈ 𝐴 ↔ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) | 
| 129 | 127, 128 | imbi12d 344 | . . . . . 6
⊢ (𝑥 = ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) ↔ ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴))) | 
| 130 | 41, 129 | spcv 3605 | . . . . 5
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ((∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ∧ Tr ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}) → ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) | 
| 131 | 54, 130 | mpan2i 697 | . . . 4
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ∈ 𝐴)) | 
| 132 | 124, 131 | mtod 198 | . . 3
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) | 
| 133 |  | dfpss2 4088 | . . . . 5
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴 ↔ (∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴)) | 
| 134 | 133 | biimpri 228 | . . . 4
⊢ ((∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊆ 𝐴 ∧ ¬ ∪
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) | 
| 135 | 40, 134 | mpan 690 | . . 3
⊢ (¬
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ⊊ 𝐴) | 
| 136 | 132, 135 | nsyl2 141 | . 2
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴) | 
| 137 |  | eluni2 4911 | . . . . 5
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ ∃𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥) | 
| 138 |  | psseq2 4091 | . . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑧 → (𝑦 ⊊ 𝑡 ↔ 𝑦 ⊊ 𝑧)) | 
| 139 | 138 | anbi1d 631 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → ((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝑧 ∧ Tr 𝑦))) | 
| 140 |  | elequ2 2123 | . . . . . . . . . . . . 13
⊢ (𝑡 = 𝑧 → (𝑦 ∈ 𝑡 ↔ 𝑦 ∈ 𝑧)) | 
| 141 | 139, 140 | imbi12d 344 | . . . . . . . . . . . 12
⊢ (𝑡 = 𝑧 → (((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 142 | 141 | albidv 1920 | . . . . . . . . . . 11
⊢ (𝑡 = 𝑧 → (∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 143 | 142 | cbvralvw 3237 | . . . . . . . . . 10
⊢
(∀𝑡 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) | 
| 144 | 13, 143 | bitrdi 287 | . . . . . . . . 9
⊢ (𝑤 = 𝑥 → (∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡) ↔ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 145 | 11, 12, 144 | 3anbi123d 1438 | . . . . . . . 8
⊢ (𝑤 = 𝑥 → ((𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡)) ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)))) | 
| 146 | 10, 145 | elab 3679 | . . . . . . 7
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} ↔ (𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 147 |  | rsp 3247 | . . . . . . . 8
⊢
(∀𝑧 ∈
𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 148 | 147 | 3ad2ant3 1136 | . . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ Tr 𝑥 ∧ ∀𝑧 ∈ 𝑥 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 149 | 146, 148 | sylbi 217 | . . . . . 6
⊢ (𝑥 ∈ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → (𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 150 | 149 | rexlimiv 3148 | . . . . 5
⊢
(∃𝑥 ∈
{𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}𝑧 ∈ 𝑥 → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) | 
| 151 | 137, 150 | sylbi 217 | . . . 4
⊢ (𝑧 ∈ ∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} → ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) | 
| 152 | 151 | rgen 3063 | . . 3
⊢
∀𝑧 ∈
∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) | 
| 153 |  | raleq 3323 | . . 3
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → (∀𝑧 ∈ ∪ {𝑤 ∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))}∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧))) | 
| 154 | 152, 153 | mpbii 233 | . 2
⊢ (∪ {𝑤
∣ (𝑤 ⊆ 𝐴 ∧ Tr 𝑤 ∧ ∀𝑡 ∈ 𝑤 ∀𝑦((𝑦 ⊊ 𝑡 ∧ Tr 𝑦) → 𝑦 ∈ 𝑡))} = 𝐴 → ∀𝑧 ∈ 𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧)) | 
| 155 |  | psseq2 4091 | . . . . . 6
⊢ (𝑧 = 𝐵 → (𝑦 ⊊ 𝑧 ↔ 𝑦 ⊊ 𝐵)) | 
| 156 | 155 | anbi1d 631 | . . . . 5
⊢ (𝑧 = 𝐵 → ((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) ↔ (𝑦 ⊊ 𝐵 ∧ Tr 𝑦))) | 
| 157 |  | eleq2 2830 | . . . . 5
⊢ (𝑧 = 𝐵 → (𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝐵)) | 
| 158 | 156, 157 | imbi12d 344 | . . . 4
⊢ (𝑧 = 𝐵 → (((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | 
| 159 | 158 | albidv 1920 | . . 3
⊢ (𝑧 = 𝐵 → (∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) ↔ ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | 
| 160 | 159 | rspccv 3619 | . 2
⊢
(∀𝑧 ∈
𝐴 ∀𝑦((𝑦 ⊊ 𝑧 ∧ Tr 𝑦) → 𝑦 ∈ 𝑧) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) | 
| 161 | 136, 154,
160 | 3syl 18 | 1
⊢
(∀𝑥((𝑥 ⊊ 𝐴 ∧ Tr 𝑥) → 𝑥 ∈ 𝐴) → (𝐵 ∈ 𝐴 → ∀𝑦((𝑦 ⊊ 𝐵 ∧ Tr 𝑦) → 𝑦 ∈ 𝐵))) |