| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 2 | | proot1hash.o |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
| 3 | 1, 2 | odf 19555 |
. . . . 5
⊢ 𝑂:(Base‘𝐺)⟶ℕ0 |
| 4 | | ffn 6736 |
. . . . 5
⊢ (𝑂:(Base‘𝐺)⟶ℕ0 → 𝑂 Fn (Base‘𝐺)) |
| 5 | | fniniseg2 7082 |
. . . . 5
⊢ (𝑂 Fn (Base‘𝐺) → (◡𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
| 6 | 3, 4, 5 | mp2b 10 |
. . . 4
⊢ (◡𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} |
| 7 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (◡𝑂 “ {𝑁})) |
| 8 | | fniniseg 7080 |
. . . . . . . . . 10
⊢ (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (◡𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁))) |
| 9 | 3, 4, 8 | mp2b 10 |
. . . . . . . . 9
⊢ (𝑋 ∈ (◡𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁)) |
| 10 | 7, 9 | sylib 218 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁)) |
| 11 | 10 | simprd 495 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑂‘𝑋) = 𝑁) |
| 12 | 11 | eqeq2d 2748 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → ((𝑂‘𝑥) = (𝑂‘𝑋) ↔ (𝑂‘𝑥) = 𝑁)) |
| 13 | 12 | rabbidv 3444 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁}) |
| 14 | | isidom 20725 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 15 | 14 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
| 16 | 15 | 3ad2ant1 1134 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑅 ∈ Domn) |
| 17 | | domnring 20707 |
. . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 18 | | eqid 2737 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 19 | | proot1hash.g |
. . . . . . . . 9
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s
(Unit‘𝑅)) |
| 20 | 18, 19 | unitgrp 20383 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
| 21 | 16, 17, 20 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝐺 ∈ Grp) |
| 22 | 1 | subgacs 19179 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
| 23 | | acsmre 17695 |
. . . . . . 7
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 24 | 21, 22, 23 | 3syl 18 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
| 25 | | eqid 2737 |
. . . . . . 7
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
| 26 | 25 | mrcssv 17657 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺)) |
| 27 | | dfrab3ss 4323 |
. . . . . 6
⊢
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁})) |
| 28 | 24, 26, 27 | 3syl 18 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁})) |
| 29 | | incom 4209 |
. . . . . 6
⊢
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
| 30 | | simpl1 1192 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑅 ∈ IDomn) |
| 31 | | simpl2 1193 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑁 ∈ ℕ) |
| 32 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑥 ∈ (◡𝑂 “ {𝑁})) |
| 33 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (◡𝑂 “ {𝑁})) |
| 34 | 19, 2, 25 | proot1mul 43206 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑋 ∈ (◡𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
| 35 | 30, 31, 32, 33, 34 | syl22anc 839 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
| 36 | 35 | ex 412 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑥 ∈ (◡𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))) |
| 37 | 36 | ssrdv 3989 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (◡𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
| 38 | 6, 37 | eqsstrrid 4023 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
| 39 | | dfss2 3969 |
. . . . . . 7
⊢ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
| 40 | 38, 39 | sylib 218 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
| 41 | 29, 40 | eqtrid 2789 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) →
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
| 42 | 13, 28, 41 | 3eqtrrd 2782 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) |
| 43 | 6, 42 | eqtrid 2789 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (◡𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) |
| 44 | 43 | fveq2d 6910 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)})) |
| 45 | 10 | simpld 494 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺)) |
| 46 | | simp2 1138 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑁 ∈ ℕ) |
| 47 | 11, 46 | eqeltrd 2841 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑂‘𝑋) ∈ ℕ) |
| 48 | 1, 2, 25 | odngen 19595 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) ∈ ℕ) →
(♯‘{𝑥 ∈
((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) = (ϕ‘(𝑂‘𝑋))) |
| 49 | 21, 45, 47, 48 | syl3anc 1373 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘{𝑥 ∈
((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) = (ϕ‘(𝑂‘𝑋))) |
| 50 | 11 | fveq2d 6910 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (ϕ‘(𝑂‘𝑋)) = (ϕ‘𝑁)) |
| 51 | 44, 49, 50 | 3eqtrd 2781 |
1
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) |