Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1hash Structured version   Visualization version   GIF version

Theorem proot1hash 43168
Description: If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1hash.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1hash.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1hash ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))

Proof of Theorem proot1hash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 proot1hash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odf 19416 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
4 ffn 6652 . . . . 5 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
5 fniniseg2 6996 . . . . 5 (𝑂 Fn (Base‘𝐺) → (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
63, 4, 5mp2b 10 . . . 4 (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}
7 simp3 1138 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
8 fniniseg 6994 . . . . . . . . . 10 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
93, 4, 8mp2b 10 . . . . . . . . 9 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
107, 9sylib 218 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
1110simprd 495 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) = 𝑁)
1211eqeq2d 2740 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ((𝑂𝑥) = (𝑂𝑋) ↔ (𝑂𝑥) = 𝑁))
1312rabbidv 3402 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁})
14 isidom 20610 . . . . . . . . . 10 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1514simprbi 496 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
16153ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ Domn)
17 domnring 20592 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
18 eqid 2729 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
19 proot1hash.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2018, 19unitgrp 20268 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2116, 17, 203syl 18 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝐺 ∈ Grp)
221subgacs 19040 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
23 acsmre 17558 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2421, 22, 233syl 18 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
25 eqid 2729 . . . . . . 7 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
2625mrcssv 17520 . . . . . 6 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺))
27 dfrab3ss 4274 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
2824, 26, 273syl 18 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
29 incom 4160 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
30 simpl1 1192 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ IDomn)
31 simpl2 1193 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
32 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ (𝑂 “ {𝑁}))
33 simpl3 1194 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
3419, 2, 25proot1mul 43167 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (𝑂 “ {𝑁}) ∧ 𝑋 ∈ (𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3530, 31, 32, 33, 34syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3635ex 412 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑥 ∈ (𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})))
3736ssrdv 3941 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
386, 37eqsstrrid 3975 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
39 dfss2 3921 . . . . . . 7 ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4038, 39sylib 218 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4129, 40eqtrid 2776 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4213, 28, 413eqtrrd 2769 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
436, 42eqtrid 2776 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
4443fveq2d 6826 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}))
4510simpld 494 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺))
46 simp2 1137 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
4711, 46eqeltrd 2828 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) ∈ ℕ)
481, 2, 25odngen 19456 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
4921, 45, 47, 48syl3anc 1373 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
5011fveq2d 6826 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (ϕ‘(𝑂𝑋)) = (ϕ‘𝑁))
5144, 49, 503eqtrd 2768 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3394  cin 3902  wss 3903  {csn 4577  ccnv 5618  cima 5622   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  cn 12128  0cn0 12384  chash 14237  ϕcphi 16675  Basecbs 17120  s cress 17141  Moorecmre 17484  mrClscmrc 17485  ACScacs 17487  Grpcgrp 18812  SubGrpcsubg 18999  odcod 19403  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  Domncdomn 20577  IDomncidom 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-disj 5060  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-ofr 7614  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393  df-er 8625  df-ec 8627  df-qs 8631  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-inf 9333  df-oi 9402  df-dju 9797  df-card 9835  df-acn 9838  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-xnn0 12458  df-z 12472  df-dec 12592  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-gcd 16406  df-phi 16677  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-eqg 19004  df-ghm 19092  df-cntz 19196  df-od 19407  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-lmod 20765  df-lss 20835  df-lsp 20875  df-cnfld 21262  df-assa 21760  df-asp 21761  df-ascl 21762  df-psr 21816  df-mvr 21817  df-mpl 21818  df-opsr 21820  df-evls 21979  df-evl 21980  df-psr1 22062  df-vr1 22063  df-ply1 22064  df-coe1 22065  df-evl1 22201  df-mdeg 25958  df-deg1 25959  df-mon1 26034  df-uc1p 26035  df-q1p 26036  df-r1p 26037
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator