Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1hash Structured version   Visualization version   GIF version

Theorem proot1hash 40941
Description: If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1hash.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1hash.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1hash ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))

Proof of Theorem proot1hash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 proot1hash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odf 19060 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
4 ffn 6584 . . . . 5 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
5 fniniseg2 6921 . . . . 5 (𝑂 Fn (Base‘𝐺) → (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
63, 4, 5mp2b 10 . . . 4 (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}
7 simp3 1136 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
8 fniniseg 6919 . . . . . . . . . 10 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
93, 4, 8mp2b 10 . . . . . . . . 9 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
107, 9sylib 217 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
1110simprd 495 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) = 𝑁)
1211eqeq2d 2749 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ((𝑂𝑥) = (𝑂𝑋) ↔ (𝑂𝑥) = 𝑁))
1312rabbidv 3404 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁})
14 isidom 20488 . . . . . . . . . 10 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1514simprbi 496 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
16153ad2ant1 1131 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ Domn)
17 domnring 20480 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
18 eqid 2738 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
19 proot1hash.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2018, 19unitgrp 19824 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2116, 17, 203syl 18 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝐺 ∈ Grp)
221subgacs 18704 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
23 acsmre 17278 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2421, 22, 233syl 18 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
25 eqid 2738 . . . . . . 7 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
2625mrcssv 17240 . . . . . 6 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺))
27 dfrab3ss 4243 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
2824, 26, 273syl 18 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
29 incom 4131 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
30 simpl1 1189 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ IDomn)
31 simpl2 1190 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
32 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ (𝑂 “ {𝑁}))
33 simpl3 1191 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
3419, 2, 25proot1mul 40940 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (𝑂 “ {𝑁}) ∧ 𝑋 ∈ (𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3530, 31, 32, 33, 34syl22anc 835 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3635ex 412 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑥 ∈ (𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})))
3736ssrdv 3923 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
386, 37eqsstrrid 3966 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
39 df-ss 3900 . . . . . . 7 ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4038, 39sylib 217 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4129, 40syl5eq 2791 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4213, 28, 413eqtrrd 2783 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
436, 42syl5eq 2791 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
4443fveq2d 6760 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}))
4510simpld 494 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺))
46 simp2 1135 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
4711, 46eqeltrd 2839 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) ∈ ℕ)
481, 2, 25odngen 19097 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
4921, 45, 47, 48syl3anc 1369 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
5011fveq2d 6760 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (ϕ‘(𝑂𝑋)) = (ϕ‘𝑁))
5144, 49, 503eqtrd 2782 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  {crab 3067  cin 3882  wss 3883  {csn 4558  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cn 11903  0cn0 12163  chash 13972  ϕcphi 16393  Basecbs 16840  s cress 16867  Moorecmre 17208  mrClscmrc 17209  ACScacs 17211  Grpcgrp 18492  SubGrpcsubg 18664  odcod 19047  mulGrpcmgp 19635  Ringcrg 19698  CRingccrg 19699  Unitcui 19796  Domncdomn 20464  IDomncidom 20465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-ofr 7512  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-ec 8458  df-qs 8462  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-dvds 15892  df-gcd 16130  df-phi 16395  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-0g 17069  df-gsum 17070  df-prds 17075  df-pws 17077  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-eqg 18669  df-ghm 18747  df-cntz 18838  df-od 19051  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-srg 19657  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-rnghom 19874  df-subrg 19937  df-lmod 20040  df-lss 20109  df-lsp 20149  df-nzr 20442  df-rlreg 20467  df-domn 20468  df-idom 20469  df-cnfld 20511  df-assa 20970  df-asp 20971  df-ascl 20972  df-psr 21022  df-mvr 21023  df-mpl 21024  df-opsr 21026  df-evls 21192  df-evl 21193  df-psr1 21261  df-vr1 21262  df-ply1 21263  df-coe1 21264  df-evl1 21392  df-mdeg 25122  df-deg1 25123  df-mon1 25200  df-uc1p 25201  df-q1p 25202  df-r1p 25203
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator