Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
2 | | proot1hash.o |
. . . . . 6
⊢ 𝑂 = (od‘𝐺) |
3 | 1, 2 | odf 19060 |
. . . . 5
⊢ 𝑂:(Base‘𝐺)⟶ℕ0 |
4 | | ffn 6584 |
. . . . 5
⊢ (𝑂:(Base‘𝐺)⟶ℕ0 → 𝑂 Fn (Base‘𝐺)) |
5 | | fniniseg2 6921 |
. . . . 5
⊢ (𝑂 Fn (Base‘𝐺) → (◡𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
6 | 3, 4, 5 | mp2b 10 |
. . . 4
⊢ (◡𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} |
7 | | simp3 1136 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (◡𝑂 “ {𝑁})) |
8 | | fniniseg 6919 |
. . . . . . . . . 10
⊢ (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (◡𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁))) |
9 | 3, 4, 8 | mp2b 10 |
. . . . . . . . 9
⊢ (𝑋 ∈ (◡𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁)) |
10 | 7, 9 | sylib 217 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) = 𝑁)) |
11 | 10 | simprd 495 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑂‘𝑋) = 𝑁) |
12 | 11 | eqeq2d 2749 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → ((𝑂‘𝑥) = (𝑂‘𝑋) ↔ (𝑂‘𝑥) = 𝑁)) |
13 | 12 | rabbidv 3404 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁}) |
14 | | isidom 20488 |
. . . . . . . . . 10
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
15 | 14 | simprbi 496 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
16 | 15 | 3ad2ant1 1131 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑅 ∈ Domn) |
17 | | domnring 20480 |
. . . . . . . 8
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
18 | | eqid 2738 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
19 | | proot1hash.g |
. . . . . . . . 9
⊢ 𝐺 = ((mulGrp‘𝑅) ↾s
(Unit‘𝑅)) |
20 | 18, 19 | unitgrp 19824 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝐺 ∈ Grp) |
21 | 16, 17, 20 | 3syl 18 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝐺 ∈ Grp) |
22 | 1 | subgacs 18704 |
. . . . . . 7
⊢ (𝐺 ∈ Grp →
(SubGrp‘𝐺) ∈
(ACS‘(Base‘𝐺))) |
23 | | acsmre 17278 |
. . . . . . 7
⊢
((SubGrp‘𝐺)
∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
24 | 21, 22, 23 | 3syl 18 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺))) |
25 | | eqid 2738 |
. . . . . . 7
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
26 | 25 | mrcssv 17240 |
. . . . . 6
⊢
((SubGrp‘𝐺)
∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺)) |
27 | | dfrab3ss 4243 |
. . . . . 6
⊢
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁})) |
28 | 24, 26, 27 | 3syl 18 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁})) |
29 | | incom 4131 |
. . . . . 6
⊢
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
30 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑅 ∈ IDomn) |
31 | | simpl2 1190 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑁 ∈ ℕ) |
32 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑥 ∈ (◡𝑂 “ {𝑁})) |
33 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (◡𝑂 “ {𝑁})) |
34 | 19, 2, 25 | proot1mul 40940 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (◡𝑂 “ {𝑁}) ∧ 𝑋 ∈ (◡𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
35 | 30, 31, 32, 33, 34 | syl22anc 835 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) ∧ 𝑥 ∈ (◡𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
36 | 35 | ex 412 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑥 ∈ (◡𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))) |
37 | 36 | ssrdv 3923 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (◡𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
38 | 6, 37 | eqsstrrid 3966 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) |
39 | | df-ss 3900 |
. . . . . . 7
⊢ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
40 | 38, 39 | sylib 217 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
41 | 29, 40 | syl5eq 2791 |
. . . . 5
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) →
(((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁}) |
42 | 13, 28, 41 | 3eqtrrd 2783 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂‘𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) |
43 | 6, 42 | syl5eq 2791 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (◡𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) |
44 | 43 | fveq2d 6760 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)})) |
45 | 10 | simpld 494 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺)) |
46 | | simp2 1135 |
. . . 4
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → 𝑁 ∈ ℕ) |
47 | 11, 46 | eqeltrd 2839 |
. . 3
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (𝑂‘𝑋) ∈ ℕ) |
48 | 1, 2, 25 | odngen 19097 |
. . 3
⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂‘𝑋) ∈ ℕ) →
(♯‘{𝑥 ∈
((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) = (ϕ‘(𝑂‘𝑋))) |
49 | 21, 45, 47, 48 | syl3anc 1369 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘{𝑥 ∈
((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂‘𝑥) = (𝑂‘𝑋)}) = (ϕ‘(𝑂‘𝑋))) |
50 | 11 | fveq2d 6760 |
. 2
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (ϕ‘(𝑂‘𝑋)) = (ϕ‘𝑁)) |
51 | 44, 49, 50 | 3eqtrd 2782 |
1
⊢ ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (◡𝑂 “ {𝑁})) → (♯‘(◡𝑂 “ {𝑁})) = (ϕ‘𝑁)) |