Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  proot1hash Structured version   Visualization version   GIF version

Theorem proot1hash 43157
Description: If an integral domain has a primitive 𝑁-th root of unity, it has exactly (ϕ‘𝑁) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
Hypotheses
Ref Expression
proot1hash.g 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
proot1hash.o 𝑂 = (od‘𝐺)
Assertion
Ref Expression
proot1hash ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))

Proof of Theorem proot1hash
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
2 proot1hash.o . . . . . 6 𝑂 = (od‘𝐺)
31, 2odf 19443 . . . . 5 𝑂:(Base‘𝐺)⟶ℕ0
4 ffn 6670 . . . . 5 (𝑂:(Base‘𝐺)⟶ℕ0𝑂 Fn (Base‘𝐺))
5 fniniseg2 7016 . . . . 5 (𝑂 Fn (Base‘𝐺) → (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
63, 4, 5mp2b 10 . . . 4 (𝑂 “ {𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}
7 simp3 1138 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
8 fniniseg 7014 . . . . . . . . . 10 (𝑂 Fn (Base‘𝐺) → (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁)))
93, 4, 8mp2b 10 . . . . . . . . 9 (𝑋 ∈ (𝑂 “ {𝑁}) ↔ (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
107, 9sylib 218 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) = 𝑁))
1110simprd 495 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) = 𝑁)
1211eqeq2d 2740 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ((𝑂𝑥) = (𝑂𝑋) ↔ (𝑂𝑥) = 𝑁))
1312rabbidv 3410 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁})
14 isidom 20610 . . . . . . . . . 10 (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn))
1514simprbi 496 . . . . . . . . 9 (𝑅 ∈ IDomn → 𝑅 ∈ Domn)
16153ad2ant1 1133 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ Domn)
17 domnring 20592 . . . . . . . 8 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
18 eqid 2729 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
19 proot1hash.g . . . . . . . . 9 𝐺 = ((mulGrp‘𝑅) ↾s (Unit‘𝑅))
2018, 19unitgrp 20268 . . . . . . . 8 (𝑅 ∈ Ring → 𝐺 ∈ Grp)
2116, 17, 203syl 18 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝐺 ∈ Grp)
221subgacs 19069 . . . . . . 7 (𝐺 ∈ Grp → (SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)))
23 acsmre 17589 . . . . . . 7 ((SubGrp‘𝐺) ∈ (ACS‘(Base‘𝐺)) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
2421, 22, 233syl 18 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)))
25 eqid 2729 . . . . . . 7 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
2625mrcssv 17551 . . . . . 6 ((SubGrp‘𝐺) ∈ (Moore‘(Base‘𝐺)) → ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺))
27 dfrab3ss 4282 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ⊆ (Base‘𝐺) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
2824, 26, 273syl 18 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = 𝑁} = (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}))
29 incom 4168 . . . . . 6 (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
30 simpl1 1192 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑅 ∈ IDomn)
31 simpl2 1193 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
32 simpr 484 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ (𝑂 “ {𝑁}))
33 simpl3 1194 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (𝑂 “ {𝑁}))
3419, 2, 25proot1mul 43156 . . . . . . . . . . 11 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ) ∧ (𝑥 ∈ (𝑂 “ {𝑁}) ∧ 𝑋 ∈ (𝑂 “ {𝑁}))) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3530, 31, 32, 33, 34syl22anc 838 . . . . . . . . . 10 (((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) ∧ 𝑥 ∈ (𝑂 “ {𝑁})) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
3635ex 412 . . . . . . . . 9 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑥 ∈ (𝑂 “ {𝑁}) → 𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})))
3736ssrdv 3949 . . . . . . . 8 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
386, 37eqsstrrid 3983 . . . . . . 7 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}))
39 dfss2 3929 . . . . . . 7 ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ⊆ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ↔ ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4038, 39sylib 218 . . . . . 6 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → ({𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} ∩ ((mrCls‘(SubGrp‘𝐺))‘{𝑋})) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4129, 40eqtrid 2776 . . . . 5 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∩ {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁}) = {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁})
4213, 28, 413eqtrrd 2769 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → {𝑥 ∈ (Base‘𝐺) ∣ (𝑂𝑥) = 𝑁} = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
436, 42eqtrid 2776 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂 “ {𝑁}) = {𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)})
4443fveq2d 6844 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}))
4510simpld 494 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑋 ∈ (Base‘𝐺))
46 simp2 1137 . . . 4 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → 𝑁 ∈ ℕ)
4711, 46eqeltrd 2828 . . 3 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (𝑂𝑋) ∈ ℕ)
481, 2, 25odngen 19483 . . 3 ((𝐺 ∈ Grp ∧ 𝑋 ∈ (Base‘𝐺) ∧ (𝑂𝑋) ∈ ℕ) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
4921, 45, 47, 48syl3anc 1373 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘{𝑥 ∈ ((mrCls‘(SubGrp‘𝐺))‘{𝑋}) ∣ (𝑂𝑥) = (𝑂𝑋)}) = (ϕ‘(𝑂𝑋)))
5011fveq2d 6844 . 2 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (ϕ‘(𝑂𝑋)) = (ϕ‘𝑁))
5144, 49, 503eqtrd 2768 1 ((𝑅 ∈ IDomn ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ (𝑂 “ {𝑁})) → (♯‘(𝑂 “ {𝑁})) = (ϕ‘𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3402  cin 3910  wss 3911  {csn 4585  ccnv 5630  cima 5634   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cn 12162  0cn0 12418  chash 14271  ϕcphi 16710  Basecbs 17155  s cress 17176  Moorecmre 17519  mrClscmrc 17520  ACScacs 17522  Grpcgrp 18841  SubGrpcsubg 19028  odcod 19430  mulGrpcmgp 20025  Ringcrg 20118  CRingccrg 20119  Unitcui 20240  Domncdomn 20577  IDomncidom 20578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-ofr 7634  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416  df-er 8648  df-ec 8650  df-qs 8654  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-sum 15629  df-dvds 16199  df-gcd 16441  df-phi 16712  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17380  df-gsum 17381  df-prds 17386  df-pws 17388  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-mhm 18686  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-mulg 18976  df-subg 19031  df-eqg 19033  df-ghm 19121  df-cntz 19225  df-od 19434  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121  df-oppr 20222  df-dvdsr 20242  df-unit 20243  df-invr 20273  df-rhm 20357  df-nzr 20398  df-subrng 20431  df-subrg 20455  df-rlreg 20579  df-domn 20580  df-idom 20581  df-lmod 20744  df-lss 20814  df-lsp 20854  df-cnfld 21241  df-assa 21738  df-asp 21739  df-ascl 21740  df-psr 21794  df-mvr 21795  df-mpl 21796  df-opsr 21798  df-evls 21957  df-evl 21958  df-psr1 22040  df-vr1 22041  df-ply1 22042  df-coe1 22043  df-evl1 22179  df-mdeg 25936  df-deg1 25937  df-mon1 26012  df-uc1p 26013  df-q1p 26014  df-r1p 26015
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator