![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notrab | Structured version Visualization version GIF version |
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
notrab | ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difab 4316 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
2 | difin 4278 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) = (𝐴 ∖ {𝑥 ∣ 𝜑}) | |
3 | dfrab3 4325 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
4 | 3 | difeq2i 4133 | . . 3 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
5 | abid2 2877 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
6 | 5 | difeq1i 4132 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = (𝐴 ∖ {𝑥 ∣ 𝜑}) |
7 | 2, 4, 6 | 3eqtr4i 2773 | . 2 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) |
8 | df-rab 3434 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
9 | 1, 7, 8 | 3eqtr4i 2773 | 1 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 {crab 3433 ∖ cdif 3960 ∩ cin 3962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-in 3970 |
This theorem is referenced by: rlimrege0 15612 mhpmulcl 22171 ordtcld1 23221 ordtcld2 23222 lhop1lem 26067 rpvmasumlem 27546 finsumvtxdg2ssteplem1 29578 frgrwopreglem3 30343 zarcls 33835 hasheuni 34066 braew 34223 satfv1 35348 |
Copyright terms: Public domain | W3C validator |