Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > notrab | Structured version Visualization version GIF version |
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
notrab | ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difab 4234 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
2 | difin 4195 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) = (𝐴 ∖ {𝑥 ∣ 𝜑}) | |
3 | dfrab3 4243 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
4 | 3 | difeq2i 4054 | . . 3 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
5 | abid2 2882 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
6 | 5 | difeq1i 4053 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = (𝐴 ∖ {𝑥 ∣ 𝜑}) |
7 | 2, 4, 6 | 3eqtr4i 2776 | . 2 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) |
8 | df-rab 3073 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
9 | 1, 7, 8 | 3eqtr4i 2776 | 1 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {cab 2715 {crab 3068 ∖ cdif 3884 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 |
This theorem is referenced by: rlimrege0 15288 mhpmulcl 21339 ordtcld1 22348 ordtcld2 22349 lhop1lem 25177 rpvmasumlem 26635 finsumvtxdg2ssteplem1 27912 frgrwopreglem3 28678 zarcls 31824 hasheuni 32053 braew 32210 satfv1 33325 |
Copyright terms: Public domain | W3C validator |