Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabun2 Structured version   Visualization version   GIF version

Theorem rabun2 4286
 Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 3152 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
2 df-rab 3152 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
3 df-rab 3152 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
42, 3uneq12i 4141 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
5 elun 4129 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 623 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 1004 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
86, 7bitri 276 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
98abbii 2891 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
10 unab 4274 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
119, 10eqtr4i 2852 . . 3 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
124, 11eqtr4i 2852 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
131, 12eqtr4i 2852 1 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 396   ∨ wo 843   = wceq 1530   ∈ wcel 2107  {cab 2804  {crab 3147   ∪ cun 3938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-rab 3152  df-v 3502  df-un 3945 This theorem is referenced by:  fnsuppres  7848  lfinun  22049  vtxdginducedm1  27239
 Copyright terms: Public domain W3C validator