Proof of Theorem rabun2
Step | Hyp | Ref
| Expression |
1 | | df-rab 3306 |
. 2
⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)} |
2 | | df-rab 3306 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} |
3 | | df-rab 3306 |
. . . 4
⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
4 | 2, 3 | uneq12i 4101 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
5 | | elun 4089 |
. . . . . . 7
⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) |
6 | 5 | anbi1i 625 |
. . . . . 6
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑)) |
7 | | andir 1007 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
8 | 6, 7 | bitri 275 |
. . . . 5
⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
9 | 8 | abbii 2806 |
. . . 4
⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))} |
10 | | unab 4238 |
. . . 4
⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) = {𝑥 ∣ ((𝑥 ∈ 𝐴 ∧ 𝜑) ∨ (𝑥 ∈ 𝐵 ∧ 𝜑))} |
11 | 9, 10 | eqtr4i 2767 |
. . 3
⊢ {𝑥 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)} = ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
12 | 4, 11 | eqtr4i 2767 |
. 2
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ (𝐴 ∪ 𝐵) ∧ 𝜑)} |
13 | 1, 12 | eqtr4i 2767 |
1
⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) |