Step | Hyp | Ref
| Expression |
1 | | mbfposadd.2 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
2 | | 0re 10977 |
. . . . 5
⊢ 0 ∈
ℝ |
3 | | ifcl 4504 |
. . . . 5
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
4 | 1, 2, 3 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℝ) |
5 | | mbfposadd.4 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
6 | | ifcl 4504 |
. . . . 5
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
7 | 5, 2, 6 | sylancl 586 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐶, 𝐶, 0) ∈ ℝ) |
8 | 4, 7 | readdcld 11004 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ∈ ℝ) |
9 | 8 | fmpttd 6989 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))):𝐴⟶ℝ) |
10 | | ssrab2 4013 |
. . . 4
⊢ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ⊆ 𝐴 |
11 | | fssres 6640 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))):𝐴⟶ℝ ∧ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ⊆ 𝐴) → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}):{𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}⟶ℝ) |
12 | 9, 10, 11 | sylancl 586 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}):{𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}⟶ℝ) |
13 | | inss2 4163 |
. . . . . 6
⊢ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} |
14 | | resabs1 5921 |
. . . . . 6
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} → (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
15 | 13, 14 | ax-mp 5 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
16 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
17 | | rabid 3310 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵)) |
18 | | rabid 3310 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) |
19 | 17, 18 | anbi12i 627 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
20 | 16, 19 | bitri 274 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ ((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
21 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (0 ≤
𝐵 → if(0 ≤ 𝐵, 𝐵, 0) = 𝐵) |
22 | | iftrue 4465 |
. . . . . . . . . 10
⊢ (0 ≤
𝐶 → if(0 ≤ 𝐶, 𝐶, 0) = 𝐶) |
23 | 21, 22 | oveqan12d 7294 |
. . . . . . . . 9
⊢ ((0 ≤
𝐵 ∧ 0 ≤ 𝐶) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (𝐵 + 𝐶)) |
24 | 23 | ad2ant2l 743 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶)) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (𝐵 + 𝐶)) |
25 | 20, 24 | sylbi 216 |
. . . . . . 7
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (𝐵 + 𝐶)) |
26 | 25 | mpteq2ia 5177 |
. . . . . 6
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (𝐵 + 𝐶)) |
27 | | inss1 4162 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} |
28 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ⊆ 𝐴 |
29 | 27, 28 | sstri 3930 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 |
30 | | resmpt 5945 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
31 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(if(0
≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) |
32 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) |
33 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
34 | 31, 32, 33 | cbvmpt 5185 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
35 | 34 | reseq1i 5887 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
36 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
37 | | nfrab1 3317 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} |
38 | | nfrab1 3317 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} |
39 | 37, 38 | nfin 4150 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
40 | 39 | nfcri 2894 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
41 | 32 | nfeq2 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) |
42 | 40, 41 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
43 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ 𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
44 | 33 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) ↔ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
45 | 43, 44 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↔ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))) |
46 | 36, 42, 45 | cbvopab1 5149 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
47 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
48 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
49 | 46, 47, 48 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
50 | 30, 35, 49 | 3eqtr4g 2803 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
51 | 29, 50 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
52 | | resmpt 5945 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶))) |
53 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝐵 + 𝐶) |
54 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌(𝐵 + 𝐶) |
55 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (𝐵 + 𝐶) = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) |
56 | 53, 54, 55 | cbvmpt 5185 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) |
57 | 56 | reseq1i 5887 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
58 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (𝐵 + 𝐶)) |
59 | 54 | nfeq2 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶) |
60 | 40, 59 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) |
61 | 55 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑧 = (𝐵 + 𝐶) ↔ 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶))) |
62 | 43, 61 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (𝐵 + 𝐶)) ↔ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)))) |
63 | 58, 60, 62 | cbvopab1 5149 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (𝐵 + 𝐶))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶))} |
64 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (𝐵 + 𝐶)) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (𝐵 + 𝐶))} |
65 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶))} |
66 | 63, 64, 65 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (𝐵 + 𝐶)) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(𝐵 + 𝐶)) |
67 | 52, 57, 66 | 3eqtr4g 2803 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (𝐵 + 𝐶))) |
68 | 29, 67 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (𝐵 + 𝐶)) |
69 | 26, 51, 68 | 3eqtr4i 2776 |
. . . . 5
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
70 | 15, 69 | eqtri 2766 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
71 | | mbfposadd.5 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn) |
72 | 1 | biantrurd 533 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))) |
73 | | elrege0 13186 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (0[,)+∞) ↔
(𝐵 ∈ ℝ ∧ 0
≤ 𝐵)) |
74 | 72, 73 | bitr4di 289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐵 ↔ 𝐵 ∈ (0[,)+∞))) |
75 | 74 | rabbidva 3413 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (0[,)+∞)}) |
76 | | 0xr 11022 |
. . . . . . . . . . 11
⊢ 0 ∈
ℝ* |
77 | | pnfxr 11029 |
. . . . . . . . . . 11
⊢ +∞
∈ ℝ* |
78 | | 0ltpnf 12858 |
. . . . . . . . . . 11
⊢ 0 <
+∞ |
79 | | snunioo 13210 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0
< +∞) → ({0} ∪ (0(,)+∞)) =
(0[,)+∞)) |
80 | 76, 77, 78, 79 | mp3an 1460 |
. . . . . . . . . 10
⊢ ({0}
∪ (0(,)+∞)) = (0[,)+∞) |
81 | 80 | imaeq2i 5967 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ ({0} ∪ (0(,)+∞))) =
(◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0[,)+∞)) |
82 | | imaundi 6053 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ ({0} ∪ (0(,)+∞))) =
((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞))) |
83 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
84 | 83 | mptpreima 6141 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0[,)+∞)) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (0[,)+∞)} |
85 | 81, 82, 84 | 3eqtr3ri 2775 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (0[,)+∞)} = ((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞))) |
86 | 75, 85 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} = ((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞)))) |
87 | | mbfposadd.1 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) |
88 | 1 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) |
89 | | mbfimasn 24796 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ ∧ 0 ∈ ℝ)
→ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∈ dom
vol) |
90 | 2, 89 | mp3an3 1449 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∈ dom
vol) |
91 | | mbfima 24794 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞)) ∈ dom
vol) |
92 | | unmbl 24701 |
. . . . . . . . 9
⊢ (((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∈ dom vol ∧ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞)) ∈ dom vol)
→ ((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞))) ∈ dom
vol) |
93 | 90, 91, 92 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) → ((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞))) ∈ dom
vol) |
94 | 87, 88, 93 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (0(,)+∞))) ∈ dom
vol) |
95 | 86, 94 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∈ dom vol) |
96 | 5 | biantrurd 533 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐶 ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))) |
97 | | elrege0 13186 |
. . . . . . . . . 10
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
98 | 96, 97 | bitr4di 289 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 ≤ 𝐶 ↔ 𝐶 ∈ (0[,)+∞))) |
99 | 98 | rabbidva 3413 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ (0[,)+∞)}) |
100 | 80 | imaeq2i 5967 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ ({0} ∪ (0(,)+∞))) =
(◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0[,)+∞)) |
101 | | imaundi 6053 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ ({0} ∪ (0(,)+∞))) =
((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞))) |
102 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐴 ↦ 𝐶) |
103 | 102 | mptpreima 6141 |
. . . . . . . . 9
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0[,)+∞)) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ (0[,)+∞)} |
104 | 100, 101,
103 | 3eqtr3ri 2775 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ (0[,)+∞)} = ((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞))) |
105 | 99, 104 | eqtrdi 2794 |
. . . . . . 7
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} = ((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞)))) |
106 | | mbfposadd.3 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn) |
107 | 5 | fmpttd 6989 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ) |
108 | | mbfimasn 24796 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ ∧ 0 ∈ ℝ)
→ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∈ dom
vol) |
109 | 2, 108 | mp3an3 1449 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∈ dom
vol) |
110 | | mbfima 24794 |
. . . . . . . . 9
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞)) ∈ dom
vol) |
111 | | unmbl 24701 |
. . . . . . . . 9
⊢ (((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∈ dom vol ∧ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞)) ∈ dom vol)
→ ((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞))) ∈ dom
vol) |
112 | 109, 110,
111 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ) → ((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞))) ∈ dom
vol) |
113 | 106, 107,
112 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ {0}) ∪ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (0(,)+∞))) ∈ dom
vol) |
114 | 105, 113 | eqeltrd 2839 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∈ dom vol) |
115 | | inmbl 24706 |
. . . . . 6
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∈ dom vol ∧ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∈ dom vol) → ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) |
116 | 95, 114, 115 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) |
117 | | mbfres 24808 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ∈ MblFn ∧ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
118 | 71, 116, 117 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (𝐵 + 𝐶)) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
119 | 70, 118 | eqeltrid 2843 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
120 | | inss2 4163 |
. . . . . 6
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} |
121 | | resabs1 5921 |
. . . . . 6
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} → (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
122 | 120, 121 | ax-mp 5 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
123 | | rabid 3310 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ↔ (𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵)) |
124 | 123, 18 | anbi12i 627 |
. . . . . . . . 9
⊢ ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
125 | | elin 3903 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
126 | | anandi 673 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝐴 ∧ (¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶)) ↔ ((𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐵) ∧ (𝑥 ∈ 𝐴 ∧ 0 ≤ 𝐶))) |
127 | 124, 125,
126 | 3bitr4i 303 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ (𝑥 ∈ 𝐴 ∧ (¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶))) |
128 | | iffalse 4468 |
. . . . . . . . . . 11
⊢ (¬ 0
≤ 𝐵 → if(0 ≤
𝐵, 𝐵, 0) = 0) |
129 | 128, 22 | oveqan12d 7294 |
. . . . . . . . . 10
⊢ ((¬ 0
≤ 𝐵 ∧ 0 ≤ 𝐶) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (0 + 𝐶)) |
130 | 129 | ad2antll 726 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶))) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (0 + 𝐶)) |
131 | 5 | recnd 11003 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℂ) |
132 | 131 | addid2d 11176 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (0 + 𝐶) = 𝐶) |
133 | 132 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶))) → (0 + 𝐶) = 𝐶) |
134 | 130, 133 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ (¬ 0 ≤ 𝐵 ∧ 0 ≤ 𝐶))) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = 𝐶) |
135 | 127, 134 | sylan2b 594 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = 𝐶) |
136 | 135 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ 𝐶)) |
137 | | inss1 4162 |
. . . . . . . 8
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} |
138 | | ssrab2 4013 |
. . . . . . . 8
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ⊆ 𝐴 |
139 | 137, 138 | sstri 3930 |
. . . . . . 7
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 |
140 | | resmpt 5945 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
141 | 34 | reseq1i 5887 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
142 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
143 | | nfrab1 3317 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} |
144 | 143, 38 | nfin 4150 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
145 | 144 | nfcri 2894 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
146 | 145, 41 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
147 | | eleq1w 2821 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↔ 𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
148 | 147, 44 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↔ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))) |
149 | 142, 146,
148 | cbvopab1 5149 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
150 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
151 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
152 | 149, 150,
151 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
153 | 140, 141,
152 | 3eqtr4g 2803 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
154 | 139, 153 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
155 | | resmpt 5945 |
. . . . . . . 8
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌𝐶)) |
156 | | nfcv 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑦𝐶 |
157 | | nfcsb1v 3857 |
. . . . . . . . . 10
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐶 |
158 | | csbeq1a 3846 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑥⦌𝐶) |
159 | 156, 157,
158 | cbvmpt 5185 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) |
160 | 159 | reseq1i 5887 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
161 | | nfv 1917 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = 𝐶) |
162 | 157 | nfeq2 2924 |
. . . . . . . . . . 11
⊢
Ⅎ𝑥 𝑧 = ⦋𝑦 / 𝑥⦌𝐶 |
163 | 145, 162 | nfan 1902 |
. . . . . . . . . 10
⊢
Ⅎ𝑥(𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌𝐶) |
164 | 158 | eqeq2d 2749 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → (𝑧 = 𝐶 ↔ 𝑧 = ⦋𝑦 / 𝑥⦌𝐶)) |
165 | 147, 164 | anbi12d 631 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = 𝐶) ↔ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌𝐶))) |
166 | 161, 163,
165 | cbvopab1 5149 |
. . . . . . . . 9
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = 𝐶)} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌𝐶)} |
167 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ 𝐶) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = 𝐶)} |
168 | | df-mpt 5158 |
. . . . . . . . 9
⊢ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌𝐶) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∧ 𝑧 = ⦋𝑦 / 𝑥⦌𝐶)} |
169 | 166, 167,
168 | 3eqtr4i 2776 |
. . . . . . . 8
⊢ (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ 𝐶) = (𝑦 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ ⦋𝑦 / 𝑥⦌𝐶) |
170 | 155, 160,
169 | 3eqtr4g 2803 |
. . . . . . 7
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ 𝐶)) |
171 | 139, 170 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = (𝑥 ∈ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↦ 𝐶) |
172 | 136, 154,
171 | 3eqtr4g 2803 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
173 | 122, 172 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}))) |
174 | 83 | mptpreima 6141 |
. . . . . . . 8
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (-∞(,)0)) = {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (-∞(,)0)} |
175 | | elioomnf 13176 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ* → (𝐵 ∈ (-∞(,)0) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 0))) |
176 | 76, 175 | ax-mp 5 |
. . . . . . . . . 10
⊢ (𝐵 ∈ (-∞(,)0) ↔
(𝐵 ∈ ℝ ∧
𝐵 < 0)) |
177 | 1 | biantrurd 533 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 < 0 ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 0))) |
178 | | ltnle 11054 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐵 < 0
↔ ¬ 0 ≤ 𝐵)) |
179 | 1, 2, 178 | sylancl 586 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 < 0 ↔ ¬ 0 ≤ 𝐵)) |
180 | 177, 179 | bitr3d 280 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐵 ∈ ℝ ∧ 𝐵 < 0) ↔ ¬ 0 ≤ 𝐵)) |
181 | 176, 180 | syl5bb 283 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ∈ (-∞(,)0) ↔ ¬ 0 ≤
𝐵)) |
182 | 181 | rabbidva 3413 |
. . . . . . . 8
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐵 ∈ (-∞(,)0)} = {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵}) |
183 | 174, 182 | eqtrid 2790 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (-∞(,)0)) = {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵}) |
184 | | mbfima 24794 |
. . . . . . . 8
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (-∞(,)0)) ∈ dom
vol) |
185 | 87, 88, 184 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (◡(𝑥 ∈ 𝐴 ↦ 𝐵) “ (-∞(,)0)) ∈ dom
vol) |
186 | 183, 185 | eqeltrrd 2840 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∈ dom vol) |
187 | | inmbl 24706 |
. . . . . 6
⊢ (({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∈ dom vol ∧ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∈ dom vol) → ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) |
188 | 186, 114,
187 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) |
189 | | mbfres 24808 |
. . . . 5
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ dom vol) → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
190 | 106, 188,
189 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
191 | 173, 190 | eqeltrd 2839 |
. . 3
⊢ (𝜑 → (((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ↾ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) ∈ MblFn) |
192 | | ssid 3943 |
. . . . . 6
⊢ 𝐴 ⊆ 𝐴 |
193 | | dfrab3ss 4246 |
. . . . . 6
⊢ (𝐴 ⊆ 𝐴 → {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} = (𝐴 ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
194 | 192, 193 | ax-mp 5 |
. . . . 5
⊢ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} = (𝐴 ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
195 | | rabxm 4320 |
. . . . . 6
⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵}) |
196 | 195 | ineq1i 4142 |
. . . . 5
⊢ (𝐴 ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) = (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵}) ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
197 | | indir 4209 |
. . . . 5
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵}) ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) = (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∪ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) |
198 | 194, 196,
197 | 3eqtrri 2771 |
. . . 4
⊢ (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∪ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} |
199 | 198 | a1i 11 |
. . 3
⊢ (𝜑 → (({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∪ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐵} ∩ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶})) = {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) |
200 | 12, 119, 191, 199 | mbfres2 24809 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶}) ∈ MblFn) |
201 | | rabid 3310 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↔ (𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶)) |
202 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬ 0
≤ 𝐶 → if(0 ≤
𝐶, 𝐶, 0) = 0) |
203 | 202 | oveq2d 7291 |
. . . . . . . 8
⊢ (¬ 0
≤ 𝐶 → (if(0 ≤
𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = (if(0 ≤ 𝐵, 𝐵, 0) + 0)) |
204 | 4 | recnd 11003 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → if(0 ≤ 𝐵, 𝐵, 0) ∈ ℂ) |
205 | 204 | addid1d 11175 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (if(0 ≤ 𝐵, 𝐵, 0) + 0) = if(0 ≤ 𝐵, 𝐵, 0)) |
206 | 203, 205 | sylan9eqr 2800 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ ¬ 0 ≤ 𝐶) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
207 | 206 | anasss 467 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ ¬ 0 ≤ 𝐶)) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
208 | 201, 207 | sylan2b 594 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) → (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)) = if(0 ≤ 𝐵, 𝐵, 0)) |
209 | 208 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
210 | | ssrab2 4013 |
. . . . 5
⊢ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ⊆ 𝐴 |
211 | | resmpt 5945 |
. . . . . 6
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
212 | 34 | reseq1i 5887 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) |
213 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
214 | | nfrab1 3317 |
. . . . . . . . . 10
⊢
Ⅎ𝑥{𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} |
215 | 214 | nfcri 2894 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} |
216 | 215, 41 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
217 | | eleq1w 2821 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↔ 𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶})) |
218 | 217, 44 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↔ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))))) |
219 | 213, 216,
218 | cbvopab1 5149 |
. . . . . . 7
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
220 | | df-mpt 5158 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
221 | | df-mpt 5158 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))} |
222 | 219, 220,
221 | 3eqtr4i 2776 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) = (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌(if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
223 | 211, 212,
222 | 3eqtr4g 2803 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0)))) |
224 | 210, 223 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) |
225 | | resmpt 5945 |
. . . . . 6
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ⊆ 𝐴 → ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0))) |
226 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑦if(0
≤ 𝐵, 𝐵, 0) |
227 | | nfcsb1v 3857 |
. . . . . . . 8
⊢
Ⅎ𝑥⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0) |
228 | | csbeq1a 3846 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → if(0 ≤ 𝐵, 𝐵, 0) = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) |
229 | 226, 227,
228 | cbvmpt 5185 |
. . . . . . 7
⊢ (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) |
230 | 229 | reseq1i 5887 |
. . . . . 6
⊢ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = ((𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) |
231 | | nfv 1917 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = if(0 ≤ 𝐵, 𝐵, 0)) |
232 | 227 | nfeq2 2924 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0) |
233 | 215, 232 | nfan 1902 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) |
234 | 228 | eqeq2d 2749 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑧 = if(0 ≤ 𝐵, 𝐵, 0) ↔ 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0))) |
235 | 217, 234 | anbi12d 631 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = if(0 ≤ 𝐵, 𝐵, 0)) ↔ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)))) |
236 | 231, 233,
235 | cbvopab1 5149 |
. . . . . . 7
⊢
{〈𝑥, 𝑧〉 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = if(0 ≤ 𝐵, 𝐵, 0))} = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0))} |
237 | | df-mpt 5158 |
. . . . . . 7
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ if(0 ≤ 𝐵, 𝐵, 0)) = {〈𝑥, 𝑧〉 ∣ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = if(0 ≤ 𝐵, 𝐵, 0))} |
238 | | df-mpt 5158 |
. . . . . . 7
⊢ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) = {〈𝑦, 𝑧〉 ∣ (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∧ 𝑧 = ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0))} |
239 | 236, 237,
238 | 3eqtr4i 2776 |
. . . . . 6
⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ if(0 ≤ 𝐵, 𝐵, 0)) = (𝑦 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ ⦋𝑦 / 𝑥⦌if(0 ≤ 𝐵, 𝐵, 0)) |
240 | 225, 230,
239 | 3eqtr4g 2803 |
. . . . 5
⊢ ({𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ⊆ 𝐴 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ if(0 ≤ 𝐵, 𝐵, 0))) |
241 | 210, 240 | ax-mp 5 |
. . . 4
⊢ ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ↦ if(0 ≤ 𝐵, 𝐵, 0)) |
242 | 209, 224,
241 | 3eqtr4g 2803 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶})) |
243 | 1, 87 | mbfpos 24815 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn) |
244 | 102 | mptpreima 6141 |
. . . . . 6
⊢ (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (-∞(,)0)) = {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ (-∞(,)0)} |
245 | | elioomnf 13176 |
. . . . . . . . 9
⊢ (0 ∈
ℝ* → (𝐶 ∈ (-∞(,)0) ↔ (𝐶 ∈ ℝ ∧ 𝐶 < 0))) |
246 | 76, 245 | ax-mp 5 |
. . . . . . . 8
⊢ (𝐶 ∈ (-∞(,)0) ↔
(𝐶 ∈ ℝ ∧
𝐶 < 0)) |
247 | 5 | biantrurd 533 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 < 0 ↔ (𝐶 ∈ ℝ ∧ 𝐶 < 0))) |
248 | | ltnle 11054 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ ℝ ∧ 0 ∈
ℝ) → (𝐶 < 0
↔ ¬ 0 ≤ 𝐶)) |
249 | 5, 2, 248 | sylancl 586 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 < 0 ↔ ¬ 0 ≤ 𝐶)) |
250 | 247, 249 | bitr3d 280 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ((𝐶 ∈ ℝ ∧ 𝐶 < 0) ↔ ¬ 0 ≤ 𝐶)) |
251 | 246, 250 | syl5bb 283 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ (-∞(,)0) ↔ ¬ 0 ≤
𝐶)) |
252 | 251 | rabbidva 3413 |
. . . . . 6
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝐶 ∈ (-∞(,)0)} = {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) |
253 | 244, 252 | eqtrid 2790 |
. . . . 5
⊢ (𝜑 → (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (-∞(,)0)) = {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) |
254 | | mbfima 24794 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ↦ 𝐶) ∈ MblFn ∧ (𝑥 ∈ 𝐴 ↦ 𝐶):𝐴⟶ℝ) → (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (-∞(,)0)) ∈ dom
vol) |
255 | 106, 107,
254 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → (◡(𝑥 ∈ 𝐴 ↦ 𝐶) “ (-∞(,)0)) ∈ dom
vol) |
256 | 253, 255 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∈ dom vol) |
257 | | mbfres 24808 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ∈ MblFn ∧ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶} ∈ dom vol) → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) ∈ MblFn) |
258 | 243, 256,
257 | syl2anc 584 |
. . 3
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ if(0 ≤ 𝐵, 𝐵, 0)) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) ∈ MblFn) |
259 | 242, 258 | eqeltrd 2839 |
. 2
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ↾ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) ∈ MblFn) |
260 | | rabxm 4320 |
. . . 4
⊢ 𝐴 = ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) |
261 | 260 | eqcomi 2747 |
. . 3
⊢ ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = 𝐴 |
262 | 261 | a1i 11 |
. 2
⊢ (𝜑 → ({𝑥 ∈ 𝐴 ∣ 0 ≤ 𝐶} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 0 ≤ 𝐶}) = 𝐴) |
263 | 9, 200, 259, 262 | mbfres2 24809 |
1
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (if(0 ≤ 𝐵, 𝐵, 0) + if(0 ≤ 𝐶, 𝐶, 0))) ∈ MblFn) |