MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss2OLD Structured version   Visualization version   GIF version

Theorem dfss2OLD 3908
Description: Obsolete version of dfss2 3907 as of 16-May-2024. (Contributed by NM, 8-Jan-2002.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
dfss2OLD (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem dfss2OLD
StepHypRef Expression
1 dfss 3905 . . 3 (𝐴𝐵𝐴 = (𝐴𝐵))
2 df-in 3894 . . . 4 (𝐴𝐵) = {𝑥 ∣ (𝑥𝐴𝑥𝐵)}
32eqeq2i 2751 . . 3 (𝐴 = (𝐴𝐵) ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝑥𝐵)})
4 abeq2 2872 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴𝑥𝐵)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝑥𝐵)))
51, 3, 43bitri 297 . 2 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝑥𝐵)))
6 pm4.71 558 . . 3 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐵)))
76albii 1822 . 2 (∀𝑥(𝑥𝐴𝑥𝐵) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝑥𝐵)))
85, 7bitr4i 277 1 (𝐴𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  {cab 2715  cin 3886  wss 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-in 3894  df-ss 3904
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator