| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3916. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3916 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2740 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∩ cin 3897 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-in 3905 df-ss 3915 |
| This theorem is referenced by: iinrab2 5022 wefrc 5615 cnvcnv 6146 ordtri2or3 6415 onelini 6432 funimass1 6570 sbthlem5 9013 dmaddpi 10790 dmmulpi 10791 smndex1bas 18818 restcldi 23091 cmpsublem 23317 ustuqtop5 24163 tgioo 24714 cphsscph 25181 mdbr3 32281 mdbr4 32282 ssmd1 32295 xrge00 33004 esumpfinvallem 34110 measxun2 34246 eulerpartgbij 34408 reprfz1 34660 bj-ismooredr2 37177 bndss 37849 redundss3 38747 dfrcl2 43794 isotone2 44169 wfac8prim 45122 restuni4 45245 fourierdlem93 46324 sge0resplit 46531 mbfresmf 46864 |
| Copyright terms: Public domain | W3C validator |