| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3920. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3920 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2738 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∩ cin 3901 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-in 3909 df-ss 3919 |
| This theorem is referenced by: iinrab2 5018 wefrc 5610 cnvcnv 6139 ordtri2or3 6408 onelini 6425 funimass1 6563 sbthlem5 9004 dmaddpi 10781 dmmulpi 10782 smndex1bas 18814 restcldi 23089 cmpsublem 23315 ustuqtop5 24161 tgioo 24712 cphsscph 25179 mdbr3 32275 mdbr4 32276 ssmd1 32289 xrge00 32993 esumpfinvallem 34085 measxun2 34221 eulerpartgbij 34383 reprfz1 34635 bj-ismooredr2 37150 bndss 37832 redundss3 38671 dfrcl2 43713 isotone2 44088 wfac8prim 45041 restuni4 45164 fourierdlem93 46243 sge0resplit 46450 mbfresmf 46783 |
| Copyright terms: Public domain | W3C validator |