![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version |
Description: Variant of subclass definition dfss2 3994. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3994 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2747 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∩ cin 3975 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-in 3983 df-ss 3993 |
This theorem is referenced by: iinrab2 5093 wefrc 5694 cnvcnv 6223 ordtri2or3 6495 onelini 6513 funimass1 6660 sbthlem5 9153 dmaddpi 10959 dmmulpi 10960 smndex1bas 18941 restcldi 23202 cmpsublem 23428 ustuqtop5 24275 tgioo 24837 cphsscph 25304 mdbr3 32329 mdbr4 32330 ssmd1 32343 xrge00 32998 esumpfinvallem 34038 measxun2 34174 eulerpartgbij 34337 reprfz1 34601 bj-ismooredr2 37076 bndss 37746 redundss3 38584 dfrcl2 43636 isotone2 44011 restuni4 45023 fourierdlem93 46120 sge0resplit 46327 mbfresmf 46660 |
Copyright terms: Public domain | W3C validator |