| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3944. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3944 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2742 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3925 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-in 3933 df-ss 3943 |
| This theorem is referenced by: iinrab2 5046 wefrc 5648 cnvcnv 6181 ordtri2or3 6453 onelini 6471 funimass1 6617 sbthlem5 9099 dmaddpi 10902 dmmulpi 10903 smndex1bas 18882 restcldi 23109 cmpsublem 23335 ustuqtop5 24182 tgioo 24733 cphsscph 25201 mdbr3 32224 mdbr4 32225 ssmd1 32238 xrge00 32953 esumpfinvallem 34051 measxun2 34187 eulerpartgbij 34350 reprfz1 34602 bj-ismooredr2 37074 bndss 37756 redundss3 38592 dfrcl2 43645 isotone2 44020 wfac8prim 44975 restuni4 45093 fourierdlem93 46176 sge0resplit 46383 mbfresmf 46716 |
| Copyright terms: Public domain | W3C validator |