| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3935. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3935 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2737 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-in 3924 df-ss 3934 |
| This theorem is referenced by: iinrab2 5037 wefrc 5635 cnvcnv 6168 ordtri2or3 6437 onelini 6455 funimass1 6601 sbthlem5 9061 dmaddpi 10850 dmmulpi 10851 smndex1bas 18840 restcldi 23067 cmpsublem 23293 ustuqtop5 24140 tgioo 24691 cphsscph 25158 mdbr3 32233 mdbr4 32234 ssmd1 32247 xrge00 32960 esumpfinvallem 34071 measxun2 34207 eulerpartgbij 34370 reprfz1 34622 bj-ismooredr2 37105 bndss 37787 redundss3 38626 dfrcl2 43670 isotone2 44045 wfac8prim 44999 restuni4 45122 fourierdlem93 46204 sge0resplit 46411 mbfresmf 46744 |
| Copyright terms: Public domain | W3C validator |