| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3949. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3949 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2743 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3930 ⊆ wss 3931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-in 3938 df-ss 3948 |
| This theorem is referenced by: iinrab2 5051 wefrc 5653 cnvcnv 6186 ordtri2or3 6459 onelini 6477 funimass1 6623 sbthlem5 9106 dmaddpi 10909 dmmulpi 10910 smndex1bas 18889 restcldi 23116 cmpsublem 23342 ustuqtop5 24189 tgioo 24740 cphsscph 25208 mdbr3 32283 mdbr4 32284 ssmd1 32297 xrge00 33012 esumpfinvallem 34110 measxun2 34246 eulerpartgbij 34409 reprfz1 34661 bj-ismooredr2 37133 bndss 37815 redundss3 38651 dfrcl2 43665 isotone2 44040 wfac8prim 44994 restuni4 45112 fourierdlem93 46195 sge0resplit 46402 mbfresmf 46735 |
| Copyright terms: Public domain | W3C validator |