Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version |
Description: Variant of subclass definition df-ss 3900. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3900 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2745 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∩ cin 3882 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ss 3900 |
This theorem is referenced by: dfss2 3903 dfss2OLD 3904 iinrab2 4995 wefrc 5574 cnvcnv 6084 ordtri2or3 6348 onelini 6363 funimass1 6500 sbthlem5 8827 dmaddpi 10577 dmmulpi 10578 smndex1bas 18460 restcldi 22232 cmpsublem 22458 ustuqtop5 23305 tgioo 23865 cphsscph 24320 mdbr3 30560 mdbr4 30561 ssmd1 30574 xrge00 31197 esumpfinvallem 31942 measxun2 32078 eulerpartgbij 32239 reprfz1 32504 bj-ismooredr2 35208 bndss 35871 redundss3 36668 dfrcl2 41171 isotone2 41548 restuni4 42559 fourierdlem93 43630 sge0resplit 43834 mbfresmf 44162 |
Copyright terms: Public domain | W3C validator |