MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss Structured version   Visualization version   GIF version

Theorem dfss 3982
Description: Variant of subclass definition dfss2 3981. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
dfss (𝐴𝐵𝐴 = (𝐴𝐵))

Proof of Theorem dfss
StepHypRef Expression
1 dfss2 3981 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 eqcom 2742 . 2 ((𝐴𝐵) = 𝐴𝐴 = (𝐴𝐵))
31, 2bitri 275 1 (𝐴𝐵𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cin 3962  wss 3963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-in 3970  df-ss 3980
This theorem is referenced by:  iinrab2  5075  wefrc  5683  cnvcnv  6214  ordtri2or3  6486  onelini  6504  funimass1  6650  sbthlem5  9126  dmaddpi  10928  dmmulpi  10929  smndex1bas  18932  restcldi  23197  cmpsublem  23423  ustuqtop5  24270  tgioo  24832  cphsscph  25299  mdbr3  32326  mdbr4  32327  ssmd1  32340  xrge00  33000  esumpfinvallem  34055  measxun2  34191  eulerpartgbij  34354  reprfz1  34618  bj-ismooredr2  37093  bndss  37773  redundss3  38610  dfrcl2  43664  isotone2  44039  restuni4  45061  fourierdlem93  46155  sge0resplit  46362  mbfresmf  46695
  Copyright terms: Public domain W3C validator