Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version |
Description: Variant of subclass definition df-ss 3904. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3904 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2745 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-ss 3904 |
This theorem is referenced by: dfss2 3907 dfss2OLD 3908 iinrab2 4999 wefrc 5583 cnvcnv 6095 ordtri2or3 6363 onelini 6378 funimass1 6516 sbthlem5 8874 dmaddpi 10646 dmmulpi 10647 smndex1bas 18545 restcldi 22324 cmpsublem 22550 ustuqtop5 23397 tgioo 23959 cphsscph 24415 mdbr3 30659 mdbr4 30660 ssmd1 30673 xrge00 31295 esumpfinvallem 32042 measxun2 32178 eulerpartgbij 32339 reprfz1 32604 bj-ismooredr2 35281 bndss 35944 redundss3 36741 dfrcl2 41282 isotone2 41659 restuni4 42670 fourierdlem93 43740 sge0resplit 43944 mbfresmf 44275 |
Copyright terms: Public domain | W3C validator |