![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version |
Description: Variant of subclass definition dfss2 3981. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3981 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2742 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∩ cin 3962 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-in 3970 df-ss 3980 |
This theorem is referenced by: iinrab2 5075 wefrc 5683 cnvcnv 6214 ordtri2or3 6486 onelini 6504 funimass1 6650 sbthlem5 9126 dmaddpi 10928 dmmulpi 10929 smndex1bas 18932 restcldi 23197 cmpsublem 23423 ustuqtop5 24270 tgioo 24832 cphsscph 25299 mdbr3 32326 mdbr4 32327 ssmd1 32340 xrge00 33000 esumpfinvallem 34055 measxun2 34191 eulerpartgbij 34354 reprfz1 34618 bj-ismooredr2 37093 bndss 37773 redundss3 38610 dfrcl2 43664 isotone2 44039 restuni4 45061 fourierdlem93 46155 sge0resplit 46362 mbfresmf 46695 |
Copyright terms: Public domain | W3C validator |