MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfss Structured version   Visualization version   GIF version

Theorem dfss 3901
Description: Variant of subclass definition df-ss 3900. (Contributed by NM, 21-Jun-1993.)
Assertion
Ref Expression
dfss (𝐴𝐵𝐴 = (𝐴𝐵))

Proof of Theorem dfss
StepHypRef Expression
1 df-ss 3900 . 2 (𝐴𝐵 ↔ (𝐴𝐵) = 𝐴)
2 eqcom 2745 . 2 ((𝐴𝐵) = 𝐴𝐴 = (𝐴𝐵))
31, 2bitri 274 1 (𝐴𝐵𝐴 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cin 3882  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-ss 3900
This theorem is referenced by:  dfss2  3903  dfss2OLD  3904  iinrab2  4995  wefrc  5574  cnvcnv  6084  ordtri2or3  6348  onelini  6363  funimass1  6500  sbthlem5  8827  dmaddpi  10577  dmmulpi  10578  smndex1bas  18460  restcldi  22232  cmpsublem  22458  ustuqtop5  23305  tgioo  23865  cphsscph  24320  mdbr3  30560  mdbr4  30561  ssmd1  30574  xrge00  31197  esumpfinvallem  31942  measxun2  32078  eulerpartgbij  32239  reprfz1  32504  bj-ismooredr2  35208  bndss  35871  redundss3  36668  dfrcl2  41171  isotone2  41548  restuni4  42559  fourierdlem93  43630  sge0resplit  43834  mbfresmf  44162
  Copyright terms: Public domain W3C validator