![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version |
Description: Variant of subclass definition df-ss 3964. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3964 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
2 | eqcom 2735 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∩ cin 3946 ⊆ wss 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 df-cleq 2720 df-ss 3964 |
This theorem is referenced by: dfss2 3967 iinrab2 5073 wefrc 5672 cnvcnv 6196 ordtri2or3 6469 onelini 6487 funimass1 6635 sbthlem5 9111 dmaddpi 10913 dmmulpi 10914 smndex1bas 18857 restcldi 23076 cmpsublem 23302 ustuqtop5 24149 tgioo 24711 cphsscph 25178 mdbr3 32106 mdbr4 32107 ssmd1 32120 xrge00 32742 esumpfinvallem 33693 measxun2 33829 eulerpartgbij 33992 reprfz1 34256 bj-ismooredr2 36589 bndss 37259 redundss3 38100 dfrcl2 43104 isotone2 43479 restuni4 44487 fourierdlem93 45587 sge0resplit 45794 mbfresmf 46127 |
Copyright terms: Public domain | W3C validator |