| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfss | Structured version Visualization version GIF version | ||
| Description: Variant of subclass definition dfss2 3932. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| dfss | ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss2 3932 | . 2 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) = 𝐴) | |
| 2 | eqcom 2736 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐴 ↔ 𝐴 = (𝐴 ∩ 𝐵)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝐴 = (𝐴 ∩ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∩ cin 3913 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-in 3921 df-ss 3931 |
| This theorem is referenced by: iinrab2 5034 wefrc 5632 cnvcnv 6165 ordtri2or3 6434 onelini 6452 funimass1 6598 sbthlem5 9055 dmaddpi 10843 dmmulpi 10844 smndex1bas 18833 restcldi 23060 cmpsublem 23286 ustuqtop5 24133 tgioo 24684 cphsscph 25151 mdbr3 32226 mdbr4 32227 ssmd1 32240 xrge00 32953 esumpfinvallem 34064 measxun2 34200 eulerpartgbij 34363 reprfz1 34615 bj-ismooredr2 37098 bndss 37780 redundss3 38619 dfrcl2 43663 isotone2 44038 wfac8prim 44992 restuni4 45115 fourierdlem93 46197 sge0resplit 46404 mbfresmf 46737 |
| Copyright terms: Public domain | W3C validator |