![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeqri | Structured version Visualization version GIF version |
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
difeqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
difeqri | ⊢ (𝐴 ∖ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3958 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
2 | difeqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2729 | 1 ⊢ (𝐴 ∖ 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∖ cdif 3945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-dif 3951 |
This theorem is referenced by: difdif 4130 ddif 4136 dfss4 4258 difin 4261 difab 4300 |
Copyright terms: Public domain | W3C validator |