MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeqri Structured version   Visualization version   GIF version

Theorem difeqri 4055
Description: Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypothesis
Ref Expression
difeqri.1 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
difeqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem difeqri
StepHypRef Expression
1 eldif 3893 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
2 difeqri.1 . . 3 ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 274 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2735 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395   = wceq 1539  wcel 2108  cdif 3880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-dif 3886
This theorem is referenced by:  difdif  4061  ddif  4067  dfss4  4189  difin  4192  difab  4231
  Copyright terms: Public domain W3C validator