![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3956 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | 3 | nfn 1860 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfrabw 3468 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Ⅎwnfc 2883 {crab 3432 ∖ cdif 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rab 3433 df-dif 3950 |
This theorem is referenced by: nfsymdif 4245 csbdif 4526 iunxdif3 5097 boxcutc 8931 nfsup 9442 gsum2d2lem 19835 iunconn 22923 iundisj 25056 iundisj2 25057 limciun 25402 difrab2 31725 iundisjf 31807 iundisj2f 31808 suppss2f 31850 aciunf1 31875 iundisjfi 31994 iundisj2fi 31995 fedgmullem2 32703 sigapildsys 33148 vvdifopab 37116 compab 43186 iunconnlem2 43681 supminfxr2 44165 stoweidlem28 44730 stoweidlem34 44736 stoweidlem46 44748 stoweidlem53 44755 stoweidlem55 44757 stoweidlem59 44761 stirlinglem5 44780 preimagelt 45401 preimalegt 45402 |
Copyright terms: Public domain | W3C validator |