MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4078
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3908 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2887 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2887 . . . . 5 𝑥 𝑦𝐵
65nfn 1858 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1900 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1854 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2883 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2113  wnfc 2880  cdif 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-v 3439  df-dif 3901
This theorem is referenced by:  nfsymdif  4206  csbdif  4473  iunxdif3  5045  boxcutc  8871  nfsup  9342  gsum2d2lem  19887  iunconn  23344  iundisj  25477  iundisj2  25478  limciun  25823  difrab2  32479  iundisjf  32571  iundisj2f  32572  suppss2f  32622  aciunf1  32647  iundisjfi  32783  iundisj2fi  32784  fedgmullem2  33664  sigapildsys  34196  vvdifopab  38318  compab  44559  iunconnlem2  45052  supminfxr2  45592  stoweidlem28  46151  stoweidlem34  46157  stoweidlem46  46169  stoweidlem53  46176  stoweidlem55  46178  stoweidlem59  46182  stirlinglem5  46201  preimagelt  46822  preimalegt  46823
  Copyright terms: Public domain W3C validator