MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4079
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3912 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2886 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2886 . . . . 5 𝑥 𝑦𝐵
65nfn 1858 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1900 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1854 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2882 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2111  wnfc 2879  cdif 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-v 3438  df-dif 3905
This theorem is referenced by:  nfsymdif  4207  csbdif  4474  iunxdif3  5043  boxcutc  8865  nfsup  9335  gsum2d2lem  19883  iunconn  23341  iundisj  25474  iundisj2  25475  limciun  25820  difrab2  32472  iundisjf  32564  iundisj2f  32565  suppss2f  32615  aciunf1  32640  iundisjfi  32773  iundisj2fi  32774  fedgmullem2  33638  sigapildsys  34170  vvdifopab  38294  compab  44473  iunconnlem2  44966  supminfxr2  45506  stoweidlem28  46065  stoweidlem34  46071  stoweidlem46  46083  stoweidlem53  46090  stoweidlem55  46092  stoweidlem59  46096  stirlinglem5  46115  preimagelt  46736  preimalegt  46737
  Copyright terms: Public domain W3C validator