MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4129
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3961 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2897 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2897 . . . . 5 𝑥 𝑦𝐵
65nfn 1857 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1899 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2893 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wnfc 2890  cdif 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-v 3482  df-dif 3954
This theorem is referenced by:  nfsymdif  4257  csbdif  4524  iunxdif3  5095  boxcutc  8981  nfsup  9491  gsum2d2lem  19991  iunconn  23436  iundisj  25583  iundisj2  25584  limciun  25929  difrab2  32517  iundisjf  32602  iundisj2f  32603  suppss2f  32648  aciunf1  32673  iundisjfi  32798  iundisj2fi  32799  fedgmullem2  33681  sigapildsys  34163  vvdifopab  38261  compab  44461  iunconnlem2  44955  supminfxr2  45480  stoweidlem28  46043  stoweidlem34  46049  stoweidlem46  46061  stoweidlem53  46068  stoweidlem55  46070  stoweidlem59  46074  stirlinglem5  46093  preimagelt  46714  preimalegt  46715
  Copyright terms: Public domain W3C validator