MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4082
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3915 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2883 . . . . 5 𝑥 𝑦𝐵
65nfn 1857 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1899 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2879 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2109  wnfc 2876  cdif 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3440  df-dif 3908
This theorem is referenced by:  nfsymdif  4210  csbdif  4477  iunxdif3  5047  boxcutc  8875  nfsup  9360  gsum2d2lem  19870  iunconn  23331  iundisj  25465  iundisj2  25466  limciun  25811  difrab2  32460  iundisjf  32551  iundisj2f  32552  suppss2f  32595  aciunf1  32620  iundisjfi  32752  iundisj2fi  32753  fedgmullem2  33602  sigapildsys  34128  vvdifopab  38234  compab  44415  iunconnlem2  44908  supminfxr2  45449  stoweidlem28  46010  stoweidlem34  46016  stoweidlem46  46028  stoweidlem53  46035  stoweidlem55  46037  stoweidlem59  46041  stirlinglem5  46060  preimagelt  46681  preimalegt  46682
  Copyright terms: Public domain W3C validator