MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4064
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdif2 3900 . 2 (𝐴𝐵) = {𝑦𝐴 ∣ ¬ 𝑦𝐵}
2 nfdif.2 . . . . 5 𝑥𝐵
32nfcri 2895 . . . 4 𝑥 𝑦𝐵
43nfn 1863 . . 3 𝑥 ¬ 𝑦𝐵
5 nfdif.1 . . 3 𝑥𝐴
64, 5nfrabw 3316 . 2 𝑥{𝑦𝐴 ∣ ¬ 𝑦𝐵}
71, 6nfcxfr 2906 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  wnfc 2888  {crab 3069  cdif 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-rab 3074  df-dif 3894
This theorem is referenced by:  nfsymdif  4185  csbdif  4463  iunxdif3  5028  boxcutc  8703  nfsup  9171  gsum2d2lem  19555  iunconn  22560  iundisj  24693  iundisj2  24694  limciun  25039  difrab2  30824  iundisjf  30907  iundisj2f  30908  suppss2f  30953  aciunf1  30979  iundisjfi  31096  iundisj2fi  31097  fedgmullem2  31690  sigapildsys  32109  vvdifopab  36378  compab  42013  iunconnlem2  42508  supminfxr2  42963  stoweidlem28  43523  stoweidlem34  43529  stoweidlem46  43541  stoweidlem53  43548  stoweidlem55  43550  stoweidlem59  43554  stirlinglem5  43573  preimagelt  44190  preimalegt  44191
  Copyright terms: Public domain W3C validator