| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
| 2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2897 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2897 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 7 | 3, 6 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
| 9 | 8 | nfci 2893 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2890 ∖ cdif 3948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-v 3482 df-dif 3954 |
| This theorem is referenced by: nfsymdif 4257 csbdif 4524 iunxdif3 5095 boxcutc 8981 nfsup 9491 gsum2d2lem 19991 iunconn 23436 iundisj 25583 iundisj2 25584 limciun 25929 difrab2 32517 iundisjf 32602 iundisj2f 32603 suppss2f 32648 aciunf1 32673 iundisjfi 32798 iundisj2fi 32799 fedgmullem2 33681 sigapildsys 34163 vvdifopab 38261 compab 44461 iunconnlem2 44955 supminfxr2 45480 stoweidlem28 46043 stoweidlem34 46049 stoweidlem46 46061 stoweidlem53 46068 stoweidlem55 46070 stoweidlem59 46074 stirlinglem5 46093 preimagelt 46714 preimalegt 46715 |
| Copyright terms: Public domain | W3C validator |