| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2146, ax-11 2162, ax-12 2182. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3908 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
| 2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2887 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2887 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 5 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 7 | 3, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
| 9 | 8 | nfci 2883 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2113 Ⅎwnfc 2880 ∖ cdif 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-dif 3901 |
| This theorem is referenced by: nfsymdif 4206 csbdif 4473 iunxdif3 5045 boxcutc 8871 nfsup 9342 gsum2d2lem 19887 iunconn 23344 iundisj 25477 iundisj2 25478 limciun 25823 difrab2 32479 iundisjf 32571 iundisj2f 32572 suppss2f 32622 aciunf1 32647 iundisjfi 32783 iundisj2fi 32784 fedgmullem2 33664 sigapildsys 34196 vvdifopab 38318 compab 44559 iunconnlem2 45052 supminfxr2 45592 stoweidlem28 46151 stoweidlem34 46157 stoweidlem46 46169 stoweidlem53 46176 stoweidlem55 46178 stoweidlem59 46182 stirlinglem5 46201 preimagelt 46822 preimalegt 46823 |
| Copyright terms: Public domain | W3C validator |