| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3915 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
| 2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2883 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 7 | 3, 6 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
| 9 | 8 | nfci 2879 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ∖ cdif 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-v 3440 df-dif 3908 |
| This theorem is referenced by: nfsymdif 4210 csbdif 4477 iunxdif3 5047 boxcutc 8875 nfsup 9360 gsum2d2lem 19870 iunconn 23331 iundisj 25465 iundisj2 25466 limciun 25811 difrab2 32460 iundisjf 32551 iundisj2f 32552 suppss2f 32595 aciunf1 32620 iundisjfi 32752 iundisj2fi 32753 fedgmullem2 33602 sigapildsys 34128 vvdifopab 38234 compab 44415 iunconnlem2 44908 supminfxr2 45449 stoweidlem28 46010 stoweidlem34 46016 stoweidlem46 46028 stoweidlem53 46035 stoweidlem55 46037 stoweidlem59 46041 stirlinglem5 46060 preimagelt 46681 preimalegt 46682 |
| Copyright terms: Public domain | W3C validator |