MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4092
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3924 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2883 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2883 . . . . 5 𝑥 𝑦𝐵
65nfn 1857 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1899 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2879 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2109  wnfc 2876  cdif 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-v 3449  df-dif 3917
This theorem is referenced by:  nfsymdif  4220  csbdif  4487  iunxdif3  5059  boxcutc  8914  nfsup  9402  gsum2d2lem  19903  iunconn  23315  iundisj  25449  iundisj2  25450  limciun  25795  difrab2  32427  iundisjf  32518  iundisj2f  32519  suppss2f  32562  aciunf1  32587  iundisjfi  32719  iundisj2fi  32720  fedgmullem2  33626  sigapildsys  34152  vvdifopab  38249  compab  44431  iunconnlem2  44924  supminfxr2  45465  stoweidlem28  46026  stoweidlem34  46032  stoweidlem46  46044  stoweidlem53  46051  stoweidlem55  46053  stoweidlem59  46057  stirlinglem5  46076  preimagelt  46697  preimalegt  46698
  Copyright terms: Public domain W3C validator