![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3972 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2894 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2894 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 5 | nfn 1854 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
7 | 3, 6 | nfan 1896 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
8 | 1, 7 | nfxfr 1849 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
9 | 8 | nfci 2890 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2105 Ⅎwnfc 2887 ∖ cdif 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-nf 1780 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-v 3479 df-dif 3965 |
This theorem is referenced by: nfsymdif 4262 csbdif 4529 iunxdif3 5099 boxcutc 8979 nfsup 9488 gsum2d2lem 20005 iunconn 23451 iundisj 25596 iundisj2 25597 limciun 25943 difrab2 32525 iundisjf 32608 iundisj2f 32609 suppss2f 32654 aciunf1 32679 iundisjfi 32803 iundisj2fi 32804 fedgmullem2 33657 sigapildsys 34142 vvdifopab 38241 compab 44437 iunconnlem2 44932 supminfxr2 45418 stoweidlem28 45983 stoweidlem34 45989 stoweidlem46 46001 stoweidlem53 46008 stoweidlem55 46010 stoweidlem59 46014 stirlinglem5 46033 preimagelt 46654 preimalegt 46655 |
Copyright terms: Public domain | W3C validator |