| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3936 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
| 2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2890 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2890 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 7 | 3, 6 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1853 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
| 9 | 8 | nfci 2886 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2883 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-v 3461 df-dif 3929 |
| This theorem is referenced by: nfsymdif 4232 csbdif 4499 iunxdif3 5071 boxcutc 8955 nfsup 9463 gsum2d2lem 19954 iunconn 23366 iundisj 25501 iundisj2 25502 limciun 25847 difrab2 32479 iundisjf 32570 iundisj2f 32571 suppss2f 32616 aciunf1 32641 iundisjfi 32773 iundisj2fi 32774 fedgmullem2 33670 sigapildsys 34193 vvdifopab 38278 compab 44466 iunconnlem2 44959 supminfxr2 45496 stoweidlem28 46057 stoweidlem34 46063 stoweidlem46 46075 stoweidlem53 46082 stoweidlem55 46084 stoweidlem59 46088 stirlinglem5 46107 preimagelt 46728 preimalegt 46729 |
| Copyright terms: Public domain | W3C validator |