MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4104
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2157, ax-12 2177. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3936 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2890 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2890 . . . . 5 𝑥 𝑦𝐵
65nfn 1857 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1899 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2886 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wnfc 2883  cdif 3923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-v 3461  df-dif 3929
This theorem is referenced by:  nfsymdif  4232  csbdif  4499  iunxdif3  5071  boxcutc  8955  nfsup  9463  gsum2d2lem  19954  iunconn  23366  iundisj  25501  iundisj2  25502  limciun  25847  difrab2  32479  iundisjf  32570  iundisj2f  32571  suppss2f  32616  aciunf1  32641  iundisjfi  32773  iundisj2fi  32774  fedgmullem2  33670  sigapildsys  34193  vvdifopab  38278  compab  44466  iunconnlem2  44959  supminfxr2  45496  stoweidlem28  46057  stoweidlem34  46063  stoweidlem46  46075  stoweidlem53  46082  stoweidlem55  46084  stoweidlem59  46088  stirlinglem5  46107  preimagelt  46728  preimalegt  46729
  Copyright terms: Public domain W3C validator