| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2144, ax-11 2160, ax-12 2180. (Revised by SN, 14-May-2025.) |
| Ref | Expression |
|---|---|
| nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
| nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3912 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
| 2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 4 | nfcri 2886 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
| 6 | 5 | nfn 1858 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
| 7 | 3, 6 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
| 8 | 1, 7 | nfxfr 1854 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
| 9 | 8 | nfci 2882 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2111 Ⅎwnfc 2879 ∖ cdif 3899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 df-dif 3905 |
| This theorem is referenced by: nfsymdif 4207 csbdif 4474 iunxdif3 5043 boxcutc 8865 nfsup 9335 gsum2d2lem 19883 iunconn 23341 iundisj 25474 iundisj2 25475 limciun 25820 difrab2 32472 iundisjf 32564 iundisj2f 32565 suppss2f 32615 aciunf1 32640 iundisjfi 32773 iundisj2fi 32774 fedgmullem2 33638 sigapildsys 34170 vvdifopab 38294 compab 44473 iunconnlem2 44966 supminfxr2 45506 stoweidlem28 46065 stoweidlem34 46071 stoweidlem46 46083 stoweidlem53 46090 stoweidlem55 46092 stoweidlem59 46096 stirlinglem5 46115 preimagelt 46736 preimalegt 46737 |
| Copyright terms: Public domain | W3C validator |