![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3986 | . . 3 ⊢ (𝑦 ∈ (𝐴 ∖ 𝐵) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵)) | |
2 | nfdif.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfdif.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
5 | 4 | nfcri 2900 | . . . . 5 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
6 | 5 | nfn 1856 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
7 | 3, 6 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝐵) |
8 | 1, 7 | nfxfr 1851 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ (𝐴 ∖ 𝐵) |
9 | 8 | nfci 2896 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 Ⅎwnfc 2893 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-v 3490 df-dif 3979 |
This theorem is referenced by: nfsymdif 4276 csbdif 4547 iunxdif3 5118 boxcutc 8999 nfsup 9520 gsum2d2lem 20015 iunconn 23457 iundisj 25602 iundisj2 25603 limciun 25949 difrab2 32526 iundisjf 32611 iundisj2f 32612 suppss2f 32657 aciunf1 32681 iundisjfi 32801 iundisj2fi 32802 fedgmullem2 33643 sigapildsys 34126 vvdifopab 38216 compab 44411 iunconnlem2 44906 supminfxr2 45384 stoweidlem28 45949 stoweidlem34 45955 stoweidlem46 45967 stoweidlem53 45974 stoweidlem55 45976 stoweidlem59 45980 stirlinglem5 45999 preimagelt 46620 preimalegt 46621 |
Copyright terms: Public domain | W3C validator |