Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfdif | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) |
Ref | Expression |
---|---|
nfdif.1 | ⊢ Ⅎ𝑥𝐴 |
nfdif.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nfdif | ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfdif2 3901 | . 2 ⊢ (𝐴 ∖ 𝐵) = {𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} | |
2 | nfdif.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
3 | 2 | nfcri 2892 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐵 |
4 | 3 | nfn 1858 | . . 3 ⊢ Ⅎ𝑥 ¬ 𝑦 ∈ 𝐵 |
5 | nfdif.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
6 | 4, 5 | nfrabw 3330 | . 2 ⊢ Ⅎ𝑥{𝑦 ∈ 𝐴 ∣ ¬ 𝑦 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2903 | 1 ⊢ Ⅎ𝑥(𝐴 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2104 Ⅎwnfc 2885 {crab 3284 ∖ cdif 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-rab 3287 df-dif 3895 |
This theorem is referenced by: nfsymdif 4186 csbdif 4464 iunxdif3 5031 boxcutc 8760 nfsup 9254 gsum2d2lem 19619 iunconn 22624 iundisj 24757 iundisj2 24758 limciun 25103 difrab2 30890 iundisjf 30973 iundisj2f 30974 suppss2f 31019 aciunf1 31045 iundisjfi 31162 iundisj2fi 31163 fedgmullem2 31756 sigapildsys 32175 vvdifopab 36442 compab 42098 iunconnlem2 42593 supminfxr2 43057 stoweidlem28 43618 stoweidlem34 43624 stoweidlem46 43636 stoweidlem53 43643 stoweidlem55 43645 stoweidlem59 43649 stirlinglem5 43668 preimagelt 44287 preimalegt 44288 |
Copyright terms: Public domain | W3C validator |