MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4152
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3986 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2900 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2900 . . . . 5 𝑥 𝑦𝐵
65nfn 1856 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1898 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1851 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2896 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2108  wnfc 2893  cdif 3973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490  df-dif 3979
This theorem is referenced by:  nfsymdif  4276  csbdif  4547  iunxdif3  5118  boxcutc  8999  nfsup  9520  gsum2d2lem  20015  iunconn  23457  iundisj  25602  iundisj2  25603  limciun  25949  difrab2  32526  iundisjf  32611  iundisj2f  32612  suppss2f  32657  aciunf1  32681  iundisjfi  32801  iundisj2fi  32802  fedgmullem2  33643  sigapildsys  34126  vvdifopab  38216  compab  44411  iunconnlem2  44906  supminfxr2  45384  stoweidlem28  45949  stoweidlem34  45955  stoweidlem46  45967  stoweidlem53  45974  stoweidlem55  45976  stoweidlem59  45980  stirlinglem5  45999  preimagelt  46620  preimalegt  46621
  Copyright terms: Public domain W3C validator