MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4095
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2142, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3927 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2884 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2884 . . . . 5 𝑥 𝑦𝐵
65nfn 1857 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1899 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1853 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2880 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2109  wnfc 2877  cdif 3914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-v 3452  df-dif 3920
This theorem is referenced by:  nfsymdif  4223  csbdif  4490  iunxdif3  5062  boxcutc  8917  nfsup  9409  gsum2d2lem  19910  iunconn  23322  iundisj  25456  iundisj2  25457  limciun  25802  difrab2  32434  iundisjf  32525  iundisj2f  32526  suppss2f  32569  aciunf1  32594  iundisjfi  32726  iundisj2fi  32727  fedgmullem2  33633  sigapildsys  34159  vvdifopab  38256  compab  44438  iunconnlem2  44931  supminfxr2  45472  stoweidlem28  46033  stoweidlem34  46039  stoweidlem46  46051  stoweidlem53  46058  stoweidlem55  46060  stoweidlem59  46064  stirlinglem5  46083  preimagelt  46704  preimalegt  46705
  Copyright terms: Public domain W3C validator