MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdif Structured version   Visualization version   GIF version

Theorem nfdif 4138
Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.) Avoid ax-10 2138, ax-11 2154, ax-12 2174. (Revised by SN, 14-May-2025.)
Hypotheses
Ref Expression
nfdif.1 𝑥𝐴
nfdif.2 𝑥𝐵
Assertion
Ref Expression
nfdif 𝑥(𝐴𝐵)

Proof of Theorem nfdif
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eldif 3972 . . 3 (𝑦 ∈ (𝐴𝐵) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝐵))
2 nfdif.1 . . . . 5 𝑥𝐴
32nfcri 2894 . . . 4 𝑥 𝑦𝐴
4 nfdif.2 . . . . . 6 𝑥𝐵
54nfcri 2894 . . . . 5 𝑥 𝑦𝐵
65nfn 1854 . . . 4 𝑥 ¬ 𝑦𝐵
73, 6nfan 1896 . . 3 𝑥(𝑦𝐴 ∧ ¬ 𝑦𝐵)
81, 7nfxfr 1849 . 2 𝑥 𝑦 ∈ (𝐴𝐵)
98nfci 2890 1 𝑥(𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395  wcel 2105  wnfc 2887  cdif 3959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-v 3479  df-dif 3965
This theorem is referenced by:  nfsymdif  4262  csbdif  4529  iunxdif3  5099  boxcutc  8979  nfsup  9488  gsum2d2lem  20005  iunconn  23451  iundisj  25596  iundisj2  25597  limciun  25943  difrab2  32525  iundisjf  32608  iundisj2f  32609  suppss2f  32654  aciunf1  32679  iundisjfi  32803  iundisj2fi  32804  fedgmullem2  33657  sigapildsys  34142  vvdifopab  38241  compab  44437  iunconnlem2  44932  supminfxr2  45418  stoweidlem28  45983  stoweidlem34  45989  stoweidlem46  46001  stoweidlem53  46008  stoweidlem55  46010  stoweidlem59  46014  stirlinglem5  46033  preimagelt  46654  preimalegt  46655
  Copyright terms: Public domain W3C validator