Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | difeq1d 4061 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | difeq2d 4062 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∖ cdif 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-rab 3075 df-dif 3895 |
This theorem is referenced by: csbdif 4464 boxcutc 8710 unfilem3 9056 infdifsn 9391 cantnfp1lem3 9414 isf32lem6 10113 isf32lem7 10114 isf32lem8 10115 domtriomlem 10197 domtriom 10198 alephsuc3 10335 symgfixelsi 19039 pmtrprfval 19091 dprdf1o 19631 isirred 19937 isdrng 19991 isdrngd 20012 drngpropd 20014 issubdrg 20045 subdrgint 20067 islbs 20334 lbspropd 20357 lssacsex 20402 lspsnat 20403 frlmlbs 21000 islindf 21015 lindfmm 21030 lsslindf 21033 ptcld 22760 iundisj 24708 iundisj2 24709 iunmbl 24713 volsup 24716 dchrval 26378 nbgrval 27699 nbgr1vtx 27721 iundisjf 30922 iundisj2f 30923 iundisjfi 31111 iundisj2fi 31112 lindfpropd 31570 rprmval 31658 sradrng 31667 qtophaus 31780 zrhunitpreima 31922 meascnbl 32181 brae 32203 braew 32204 ballotlemfrc 32487 reprdifc 32601 chtvalz 32603 satffunlem2lem2 33362 xpord2pred 33786 xpord3pred 33792 newval 34033 sltlpss 34081 poimirlem4 35775 poimirlem6 35777 poimirlem7 35778 poimirlem9 35780 poimirlem13 35784 poimirlem14 35785 poimirlem16 35787 poimirlem19 35790 voliunnfl 35815 itg2addnclem 35822 isdivrngo 36102 drngoi 36103 lsatset 36998 watfvalN 38000 mapdpglem26 39706 mapdpglem27 39707 hvmapffval 39766 hvmapfval 39767 hvmap1o2 39773 prjspval 40437 prjspnvs 40454 dssmapfvd 41593 fzdifsuc2 42818 stoweidlem34 43544 subsalsal 43867 iundjiunlem 43966 iundjiun 43967 meaiuninc 43988 carageniuncllem1 44028 carageniuncl 44030 hspdifhsp 44123 |
Copyright terms: Public domain | W3C validator |