![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | difeq1d 4135 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | difeq2d 4136 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
5 | 2, 4 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-dif 3966 |
This theorem is referenced by: csbdif 4530 xpord2pred 8169 xpord3pred 8176 boxcutc 8980 unfilem3 9343 infdifsn 9695 cantnfp1lem3 9718 isf32lem6 10396 isf32lem7 10397 isf32lem8 10398 domtriomlem 10480 domtriom 10481 alephsuc3 10618 symgfixelsi 19468 pmtrprfval 19520 dprdf1o 20067 isirred 20436 isdrng 20750 isdrngd 20782 isdrngdOLD 20784 drngpropd 20786 issubdrg 20798 subdrgint 20821 islbs 21093 lbspropd 21116 lssacsex 21164 lspsnat 21165 frlmlbs 21835 islindf 21850 lindfmm 21865 lsslindf 21868 psdmullem 22187 ptcld 23637 iundisj 25597 iundisj2 25598 iunmbl 25602 volsup 25605 dchrval 27293 newval 27909 sltlpss 27960 slelss 27961 nbgrval 29368 nbgr1vtx 29390 iundisjf 32609 iundisj2f 32610 iundisjfi 32804 iundisj2fi 32805 lindfpropd 33390 opprqusdrng 33501 rprmval 33524 isufd 33548 sradrng 33613 qtophaus 33797 zrhunitpreima 33939 meascnbl 34200 brae 34222 braew 34223 ballotlemfrc 34508 reprdifc 34621 chtvalz 34623 satffunlem2lem2 35391 poimirlem4 37611 poimirlem6 37613 poimirlem7 37614 poimirlem9 37616 poimirlem13 37620 poimirlem14 37621 poimirlem16 37623 poimirlem19 37626 voliunnfl 37651 itg2addnclem 37658 isdivrngo 37937 drngoi 37938 lsatset 38972 watfvalN 39975 mapdpglem26 41681 mapdpglem27 41682 hvmapffval 41741 hvmapfval 41742 hvmap1o2 41748 prjspval 42590 prjspnvs 42607 cantnfresb 43314 tfsconcatun 43327 tfsconcat0i 43335 dssmapfvd 44007 fzdifsuc2 45261 stoweidlem34 45990 subsalsal 46315 iundjiunlem 46415 iundjiun 46416 meaiuninc 46437 carageniuncllem1 46477 carageniuncl 46479 hspdifhsp 46572 |
Copyright terms: Public domain | W3C validator |