| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | difeq1d 4124 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| 3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | difeq2d 4125 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| 5 | 2, 4 | eqtrd 2776 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3947 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-rab 3436 df-dif 3953 |
| This theorem is referenced by: csbdif 4523 xpord2pred 8171 xpord3pred 8178 boxcutc 8982 unfilem3 9346 infdifsn 9698 cantnfp1lem3 9721 isf32lem6 10399 isf32lem7 10400 isf32lem8 10401 domtriomlem 10483 domtriom 10484 alephsuc3 10621 symgfixelsi 19454 pmtrprfval 19506 dprdf1o 20053 isirred 20420 isdrng 20734 isdrngd 20766 isdrngdOLD 20768 drngpropd 20770 issubdrg 20782 subdrgint 20805 islbs 21076 lbspropd 21099 lssacsex 21147 lspsnat 21148 frlmlbs 21818 islindf 21833 lindfmm 21848 lsslindf 21851 psdmullem 22170 ptcld 23622 iundisj 25584 iundisj2 25585 iunmbl 25589 volsup 25592 dchrval 27279 newval 27895 sltlpss 27946 slelss 27947 nbgrval 29354 nbgr1vtx 29376 iundisjf 32603 iundisj2f 32604 iundisjfi 32799 iundisj2fi 32800 lindfpropd 33411 opprqusdrng 33522 rprmval 33545 isufd 33569 sradrng 33634 qtophaus 33836 zrhunitpreima 33978 meascnbl 34221 brae 34243 braew 34244 ballotlemfrc 34530 reprdifc 34643 chtvalz 34645 satffunlem2lem2 35412 poimirlem4 37632 poimirlem6 37634 poimirlem7 37635 poimirlem9 37637 poimirlem13 37641 poimirlem14 37642 poimirlem16 37644 poimirlem19 37647 voliunnfl 37672 itg2addnclem 37679 isdivrngo 37958 drngoi 37959 lsatset 38992 watfvalN 39995 mapdpglem26 41701 mapdpglem27 41702 hvmapffval 41761 hvmapfval 41762 hvmap1o2 41768 prjspval 42618 prjspnvs 42635 cantnfresb 43342 tfsconcatun 43355 tfsconcat0i 43363 dssmapfvd 44035 fzdifsuc2 45327 stoweidlem34 46054 subsalsal 46379 iundjiunlem 46479 iundjiun 46480 meaiuninc 46501 carageniuncllem1 46541 carageniuncl 46543 hspdifhsp 46636 |
| Copyright terms: Public domain | W3C validator |