![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | difeq1d 4148 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | difeq2d 4149 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
5 | 2, 4 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 |
This theorem is referenced by: csbdif 4547 xpord2pred 8186 xpord3pred 8193 boxcutc 8999 unfilem3 9373 infdifsn 9726 cantnfp1lem3 9749 isf32lem6 10427 isf32lem7 10428 isf32lem8 10429 domtriomlem 10511 domtriom 10512 alephsuc3 10649 symgfixelsi 19477 pmtrprfval 19529 dprdf1o 20076 isirred 20445 isdrng 20755 isdrngd 20787 isdrngdOLD 20789 drngpropd 20791 issubdrg 20803 subdrgint 20826 islbs 21098 lbspropd 21121 lssacsex 21169 lspsnat 21170 frlmlbs 21840 islindf 21855 lindfmm 21870 lsslindf 21873 psdmullem 22192 ptcld 23642 iundisj 25602 iundisj2 25603 iunmbl 25607 volsup 25610 dchrval 27296 newval 27912 sltlpss 27963 slelss 27964 nbgrval 29371 nbgr1vtx 29393 iundisjf 32611 iundisj2f 32612 iundisjfi 32801 iundisj2fi 32802 lindfpropd 33375 opprqusdrng 33486 rprmval 33509 isufd 33533 sradrng 33598 qtophaus 33782 zrhunitpreima 33924 meascnbl 34183 brae 34205 braew 34206 ballotlemfrc 34491 reprdifc 34604 chtvalz 34606 satffunlem2lem2 35374 poimirlem4 37584 poimirlem6 37586 poimirlem7 37587 poimirlem9 37589 poimirlem13 37593 poimirlem14 37594 poimirlem16 37596 poimirlem19 37599 voliunnfl 37624 itg2addnclem 37631 isdivrngo 37910 drngoi 37911 lsatset 38946 watfvalN 39949 mapdpglem26 41655 mapdpglem27 41656 hvmapffval 41715 hvmapfval 41716 hvmap1o2 41722 prjspval 42558 prjspnvs 42575 cantnfresb 43286 tfsconcatun 43299 tfsconcat0i 43307 dssmapfvd 43979 fzdifsuc2 45225 stoweidlem34 45955 subsalsal 46280 iundjiunlem 46380 iundjiun 46381 meaiuninc 46402 carageniuncllem1 46442 carageniuncl 46444 hspdifhsp 46537 |
Copyright terms: Public domain | W3C validator |