| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | difeq1d 4088 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| 3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | difeq2d 4089 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| 5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Copyright terms: Public domain | W3C validator |