MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difeq12d Structured version   Visualization version   GIF version

Theorem difeq12d 4077
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
Hypotheses
Ref Expression
difeq12d.1 (𝜑𝐴 = 𝐵)
difeq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
difeq12d (𝜑 → (𝐴𝐶) = (𝐵𝐷))

Proof of Theorem difeq12d
StepHypRef Expression
1 difeq12d.1 . . 3 (𝜑𝐴 = 𝐵)
21difeq1d 4075 . 2 (𝜑 → (𝐴𝐶) = (𝐵𝐶))
3 difeq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43difeq2d 4076 . 2 (𝜑 → (𝐵𝐶) = (𝐵𝐷))
52, 4eqtrd 2766 1 (𝜑 → (𝐴𝐶) = (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  cdif 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-dif 3905
This theorem is referenced by:  csbdif  4474  xpord2pred  8075  xpord3pred  8082  boxcutc  8865  unfilem3  9191  infdifsn  9547  cantnfp1lem3  9570  isf32lem6  10249  isf32lem7  10250  isf32lem8  10251  domtriomlem  10333  domtriom  10334  alephsuc3  10471  symgfixelsi  19348  pmtrprfval  19400  dprdf1o  19947  isirred  20338  isdrng  20649  isdrngd  20681  isdrngdOLD  20683  drngpropd  20685  issubdrg  20696  subdrgint  20719  islbs  21011  lbspropd  21034  lssacsex  21082  lspsnat  21083  frlmlbs  21735  islindf  21750  lindfmm  21765  lsslindf  21768  psdmullem  22081  ptcld  23529  iundisj  25477  iundisj2  25478  iunmbl  25482  volsup  25485  dchrval  27173  newval  27797  sltlpss  27854  slelss  27855  nbgrval  29315  nbgr1vtx  29337  iundisjf  32567  iundisj2f  32568  iundisjfi  32776  iundisj2fi  32777  lindfpropd  33345  opprqusdrng  33456  rprmval  33479  isufd  33503  sradrng  33592  qtophaus  33847  zrhunitpreima  33987  meascnbl  34230  brae  34252  braew  34253  ballotlemfrc  34538  reprdifc  34638  chtvalz  34640  onvf1odlem3  35147  satffunlem2lem2  35448  poimirlem4  37670  poimirlem6  37672  poimirlem7  37673  poimirlem9  37675  poimirlem13  37679  poimirlem14  37680  poimirlem16  37682  poimirlem19  37685  voliunnfl  37710  itg2addnclem  37717  isdivrngo  37996  drngoi  37997  lsatset  39035  watfvalN  40037  mapdpglem26  41743  mapdpglem27  41744  hvmapffval  41803  hvmapfval  41804  hvmap1o2  41810  prjspval  42642  prjspnvs  42659  cantnfresb  43363  tfsconcatun  43376  tfsconcat0i  43384  dssmapfvd  44056  fzdifsuc2  45357  stoweidlem34  46078  subsalsal  46403  iundjiunlem  46503  iundjiun  46504  meaiuninc  46525  carageniuncllem1  46565  carageniuncl  46567  hspdifhsp  46660
  Copyright terms: Public domain W3C validator