| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
| Ref | Expression |
|---|---|
| difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | difeq1d 4105 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
| 3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | difeq2d 4106 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| 5 | 2, 4 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∖ cdif 3928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-dif 3934 |
| This theorem is referenced by: csbdif 4504 xpord2pred 8149 xpord3pred 8156 boxcutc 8960 unfilem3 9322 infdifsn 9676 cantnfp1lem3 9699 isf32lem6 10377 isf32lem7 10378 isf32lem8 10379 domtriomlem 10461 domtriom 10462 alephsuc3 10599 symgfixelsi 19421 pmtrprfval 19473 dprdf1o 20020 isirred 20384 isdrng 20698 isdrngd 20730 isdrngdOLD 20732 drngpropd 20734 issubdrg 20745 subdrgint 20768 islbs 21039 lbspropd 21062 lssacsex 21110 lspsnat 21111 frlmlbs 21762 islindf 21777 lindfmm 21792 lsslindf 21795 psdmullem 22108 ptcld 23556 iundisj 25506 iundisj2 25507 iunmbl 25511 volsup 25514 dchrval 27202 newval 27820 sltlpss 27876 slelss 27877 nbgrval 29320 nbgr1vtx 29342 iundisjf 32575 iundisj2f 32576 iundisjfi 32778 iundisj2fi 32779 lindfpropd 33402 opprqusdrng 33513 rprmval 33536 isufd 33560 sradrng 33627 qtophaus 33872 zrhunitpreima 34012 meascnbl 34255 brae 34277 braew 34278 ballotlemfrc 34564 reprdifc 34664 chtvalz 34666 satffunlem2lem2 35433 poimirlem4 37653 poimirlem6 37655 poimirlem7 37656 poimirlem9 37658 poimirlem13 37662 poimirlem14 37663 poimirlem16 37665 poimirlem19 37668 voliunnfl 37693 itg2addnclem 37700 isdivrngo 37979 drngoi 37980 lsatset 39013 watfvalN 40016 mapdpglem26 41722 mapdpglem27 41723 hvmapffval 41782 hvmapfval 41783 hvmap1o2 41789 prjspval 42593 prjspnvs 42610 cantnfresb 43315 tfsconcatun 43328 tfsconcat0i 43336 dssmapfvd 44008 fzdifsuc2 45306 stoweidlem34 46030 subsalsal 46355 iundjiunlem 46455 iundjiun 46456 meaiuninc 46477 carageniuncllem1 46517 carageniuncl 46519 hspdifhsp 46612 |
| Copyright terms: Public domain | W3C validator |