Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq12d | Structured version Visualization version GIF version |
Description: Equality deduction for class difference. (Contributed by FL, 29-May-2014.) |
Ref | Expression |
---|---|
difeq12d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
difeq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
difeq12d | ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq12d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | difeq1d 4052 | . 2 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐶)) |
3 | difeq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | difeq2d 4053 | . 2 ⊢ (𝜑 → (𝐵 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
5 | 2, 4 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝐴 ∖ 𝐶) = (𝐵 ∖ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: csbdif 4455 boxcutc 8687 unfilem3 9010 infdifsn 9345 cantnfp1lem3 9368 isf32lem6 10045 isf32lem7 10046 isf32lem8 10047 domtriomlem 10129 domtriom 10130 alephsuc3 10267 symgfixelsi 18958 pmtrprfval 19010 dprdf1o 19550 isirred 19856 isdrng 19910 isdrngd 19931 drngpropd 19933 issubdrg 19964 subdrgint 19986 islbs 20253 lbspropd 20276 lssacsex 20321 lspsnat 20322 frlmlbs 20914 islindf 20929 lindfmm 20944 lsslindf 20947 ptcld 22672 iundisj 24617 iundisj2 24618 iunmbl 24622 volsup 24625 dchrval 26287 nbgrval 27606 nbgr1vtx 27628 iundisjf 30829 iundisj2f 30830 iundisjfi 31019 iundisj2fi 31020 lindfpropd 31478 rprmval 31566 sradrng 31575 qtophaus 31688 zrhunitpreima 31828 meascnbl 32087 brae 32109 braew 32110 ballotlemfrc 32393 reprdifc 32507 chtvalz 32509 satffunlem2lem2 33268 xpord2pred 33719 xpord3pred 33725 newval 33966 sltlpss 34014 poimirlem4 35708 poimirlem6 35710 poimirlem7 35711 poimirlem9 35713 poimirlem13 35717 poimirlem14 35718 poimirlem16 35720 poimirlem19 35723 voliunnfl 35748 itg2addnclem 35755 isdivrngo 36035 drngoi 36036 lsatset 36931 watfvalN 37933 mapdpglem26 39639 mapdpglem27 39640 hvmapffval 39699 hvmapfval 39700 hvmap1o2 39706 prjspval 40363 prjspnvs 40380 dssmapfvd 41514 fzdifsuc2 42739 stoweidlem34 43465 subsalsal 43788 iundjiunlem 43887 iundjiun 43888 meaiuninc 43909 carageniuncllem1 43949 carageniuncl 43951 hspdifhsp 44044 |
Copyright terms: Public domain | W3C validator |