![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjsuc2 | Structured version Visualization version GIF version |
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.) |
Ref | Expression |
---|---|
disjsuc2 | ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjressuc2 38384 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝐴](𝑅 ⋉ ◡ E )) = ∅))) | |
2 | disjecxrncnvep 38386 | . . . . 5 ⊢ ((𝑢 ∈ V ∧ 𝐴 ∈ 𝑉) → (([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝐴](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) | |
3 | 2 | el2v1 38218 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝐴](𝑅 ⋉ ◡ E )) = ∅ ↔ ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
4 | 3 | ralbidv 3178 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ 𝐴 ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝐴](𝑅 ⋉ ◡ E )) = ∅ ↔ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))) |
5 | 4 | anbi2d 630 | . 2 ⊢ (𝐴 ∈ 𝑉 → ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝐴](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
6 | 1, 5 | bitrd 279 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 ⋉ ◡ E ) ∩ [𝑣](𝑅 ⋉ ◡ E )) = ∅) ∧ ∀𝑢 ∈ 𝐴 ((𝑢 ∩ 𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1539 ∈ wcel 2108 ∀wral 3061 Vcvv 3481 ∪ cun 3964 ∩ cin 3965 ∅c0 4342 {csn 4634 E cep 5592 ◡ccnv 5692 [cec 8751 ⋉ cxrn 38175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 ax-reg 9639 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-eprel 5593 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-fo 6575 df-fv 6577 df-1st 8022 df-2nd 8023 df-ec 8755 df-xrn 38367 |
This theorem is referenced by: disjsuc 38755 |
Copyright terms: Public domain | W3C validator |