Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjsuc2 Structured version   Visualization version   GIF version

Theorem disjsuc2 38351
Description: Double restricted quantification over the union of a set and its singleton. (Contributed by Peter Mazsa, 22-Aug-2023.)
Assertion
Ref Expression
disjsuc2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Distinct variable groups:   𝑢,𝐴,𝑣   𝑢,𝑅,𝑣   𝑢,𝑉
Allowed substitution hint:   𝑉(𝑣)

Proof of Theorem disjsuc2
StepHypRef Expression
1 disjressuc2 38348 . 2 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ([𝑢](𝑅 E ) ∩ [𝐴](𝑅 E )) = ∅)))
2 disjecxrncnvep 38350 . . . . 5 ((𝑢 ∈ V ∧ 𝐴𝑉) → (([𝑢](𝑅 E ) ∩ [𝐴](𝑅 E )) = ∅ ↔ ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
32el2v1 38183 . . . 4 (𝐴𝑉 → (([𝑢](𝑅 E ) ∩ [𝐴](𝑅 E )) = ∅ ↔ ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
43ralbidv 3165 . . 3 (𝐴𝑉 → (∀𝑢𝐴 ([𝑢](𝑅 E ) ∩ [𝐴](𝑅 E )) = ∅ ↔ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅)))
54anbi2d 630 . 2 (𝐴𝑉 → ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ([𝑢](𝑅 E ) ∩ [𝐴](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
61, 5bitrd 279 1 (𝐴𝑉 → (∀𝑢 ∈ (𝐴 ∪ {𝐴})∀𝑣 ∈ (𝐴 ∪ {𝐴})(𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢](𝑅 E ) ∩ [𝑣](𝑅 E )) = ∅) ∧ ∀𝑢𝐴 ((𝑢𝐴) = ∅ ∨ ([𝑢]𝑅 ∩ [𝐴]𝑅) = ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1539  wcel 2107  wral 3050  Vcvv 3463  cun 3929  cin 3930  c0 4313  {csn 4606   E cep 5563  ccnv 5664  [cec 8725  cxrn 38140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737  ax-reg 9614
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-eprel 5564  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fo 6547  df-fv 6549  df-1st 7996  df-2nd 7997  df-ec 8729  df-xrn 38331
This theorem is referenced by:  disjsuc  38719
  Copyright terms: Public domain W3C validator