![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres3 | Structured version Visualization version GIF version |
Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
exanres3 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV 37770 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
2 | 1 | el2v1 37723 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) |
3 | elecALTV 37770 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) | |
4 | 3 | el2v1 37723 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) |
5 | 2, 4 | bi2anan9 636 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
6 | 5 | rexbidv 3176 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∃wrex 3067 Vcvv 3473 class class class wbr 5152 [cec 8729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-xp 5688 df-cnv 5690 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ec 8733 |
This theorem is referenced by: exanres2 37801 br1cossres2 37944 |
Copyright terms: Public domain | W3C validator |