Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres3 | Structured version Visualization version GIF version |
Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
exanres3 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV 36405 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
2 | 1 | el2v1 36370 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) |
3 | elecALTV 36405 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) | |
4 | 3 | el2v1 36370 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) |
5 | 2, 4 | bi2anan9 636 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
6 | 5 | rexbidv 3226 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 class class class wbr 5074 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: exanres2 36432 br1cossres2 36563 |
Copyright terms: Public domain | W3C validator |