|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > exanres3 | Structured version Visualization version GIF version | ||
| Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| exanres3 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elecALTV 38267 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
| 2 | 1 | el2v1 38224 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | 
| 3 | elecALTV 38267 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐶 ∈ 𝑊) → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) | |
| 4 | 3 | el2v1 38224 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐶 ∈ [𝑢]𝑆 ↔ 𝑢𝑆𝐶)) | 
| 5 | 2, 4 | bi2anan9 638 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | 
| 6 | 5 | rexbidv 3179 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (∃𝑢 ∈ 𝐴 (𝐵 ∈ [𝑢]𝑅 ∧ 𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢 ∈ 𝐴 (𝑢𝑅𝐵 ∧ 𝑢𝑆𝐶))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃wrex 3070 Vcvv 3480 class class class wbr 5143 [cec 8743 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ec 8747 | 
| This theorem is referenced by: exanres2 38298 br1cossres2 38441 | 
| Copyright terms: Public domain | W3C validator |