Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres3 Structured version   Visualization version   GIF version

Theorem exanres3 36440
Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exanres3 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres3
StepHypRef Expression
1 elecALTV 36414 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
21el2v1 36379 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
3 elecALTV 36414 . . . 4 ((𝑢 ∈ V ∧ 𝐶𝑊) → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
43el2v1 36379 . . 3 (𝐶𝑊 → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
52, 4bi2anan9 636 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
65rexbidv 3228 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2110  wrex 3067  Vcvv 3431   class class class wbr 5079  [cec 8488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-br 5080  df-opab 5142  df-xp 5596  df-cnv 5598  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-ec 8492
This theorem is referenced by:  exanres2  36441  br1cossres2  36572
  Copyright terms: Public domain W3C validator