Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres3 Structured version   Visualization version   GIF version

Theorem exanres3 36431
Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exanres3 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres3
StepHypRef Expression
1 elecALTV 36405 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
21el2v1 36370 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
3 elecALTV 36405 . . . 4 ((𝑢 ∈ V ∧ 𝐶𝑊) → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
43el2v1 36370 . . 3 (𝐶𝑊 → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
52, 4bi2anan9 636 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
65rexbidv 3226 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  wrex 3065  Vcvv 3432   class class class wbr 5074  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  exanres2  36432  br1cossres2  36563
  Copyright terms: Public domain W3C validator