Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exanres3 Structured version   Visualization version   GIF version

Theorem exanres3 38297
Description: Equivalent expressions with restricted existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exanres3 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Distinct variable groups:   𝑢,𝐵   𝑢,𝐶   𝑢,𝑉   𝑢,𝑊
Allowed substitution hints:   𝐴(𝑢)   𝑅(𝑢)   𝑆(𝑢)

Proof of Theorem exanres3
StepHypRef Expression
1 elecALTV 38267 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
21el2v1 38224 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
3 elecALTV 38267 . . . 4 ((𝑢 ∈ V ∧ 𝐶𝑊) → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
43el2v1 38224 . . 3 (𝐶𝑊 → (𝐶 ∈ [𝑢]𝑆𝑢𝑆𝐶))
52, 4bi2anan9 638 . 2 ((𝐵𝑉𝐶𝑊) → ((𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ (𝑢𝑅𝐵𝑢𝑆𝐶)))
65rexbidv 3179 1 ((𝐵𝑉𝐶𝑊) → (∃𝑢𝐴 (𝐵 ∈ [𝑢]𝑅𝐶 ∈ [𝑢]𝑆) ↔ ∃𝑢𝐴 (𝑢𝑅𝐵𝑢𝑆𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wrex 3070  Vcvv 3480   class class class wbr 5143  [cec 8743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-xp 5691  df-cnv 5693  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-ec 8747
This theorem is referenced by:  exanres2  38298  br1cossres2  38441
  Copyright terms: Public domain W3C validator