Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exan3 Structured version   Visualization version   GIF version

Theorem exan3 38282
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exan3 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉   𝑢,𝑊
Allowed substitution hint:   𝑅(𝑢)

Proof of Theorem exan3
StepHypRef Expression
1 elecALTV 38255 . . . 4 ((𝑢 ∈ V ∧ 𝐴𝑉) → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
21el2v1 38211 . . 3 (𝐴𝑉 → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
3 elecALTV 38255 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑊) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
43el2v1 38211 . . 3 (𝐵𝑊 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
52, 4bi2anan9 638 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1921 1 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3447   class class class wbr 5107  [cec 8669
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673
This theorem is referenced by:  brcoss2  38423
  Copyright terms: Public domain W3C validator