Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exan3 Structured version   Visualization version   GIF version

Theorem exan3 38250
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exan3 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉   𝑢,𝑊
Allowed substitution hint:   𝑅(𝑢)

Proof of Theorem exan3
StepHypRef Expression
1 elecALTV 38222 . . . 4 ((𝑢 ∈ V ∧ 𝐴𝑉) → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
21el2v1 38177 . . 3 (𝐴𝑉 → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
3 elecALTV 38222 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑊) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
43el2v1 38177 . . 3 (𝐵𝑊 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
52, 4bi2anan9 637 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1920 1 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1777  wcel 2108  Vcvv 3488   class class class wbr 5166  [cec 8761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ec 8765
This theorem is referenced by:  brcoss2  38388
  Copyright terms: Public domain W3C validator