![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > exan3 | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
exan3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV 38222 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) | |
2 | 1 | el2v1 38177 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) |
3 | elecALTV 38222 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
4 | 3 | el2v1 38177 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) |
5 | 2, 4 | bi2anan9 637 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
6 | 5 | exbidv 1920 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 [cec 8761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ec 8765 |
This theorem is referenced by: brcoss2 38388 |
Copyright terms: Public domain | W3C validator |