Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exan3 | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
exan3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV 36017 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) | |
2 | 1 | el2v1 35982 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) |
3 | elecALTV 36017 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
4 | 3 | el2v1 35982 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) |
5 | 2, 4 | bi2anan9 639 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
6 | 5 | exbidv 1927 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∃wex 1786 ∈ wcel 2113 Vcvv 3397 class class class wbr 5027 [cec 8311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pr 5293 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-sn 4514 df-pr 4516 df-op 4520 df-br 5028 df-opab 5090 df-xp 5525 df-cnv 5527 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-ec 8315 |
This theorem is referenced by: brcoss2 36167 |
Copyright terms: Public domain | W3C validator |