Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  exan3 Structured version   Visualization version   GIF version

Theorem exan3 36356
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.)
Assertion
Ref Expression
exan3 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝑉   𝑢,𝑊
Allowed substitution hint:   𝑅(𝑢)

Proof of Theorem exan3
StepHypRef Expression
1 elecALTV 36332 . . . 4 ((𝑢 ∈ V ∧ 𝐴𝑉) → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
21el2v1 36297 . . 3 (𝐴𝑉 → (𝐴 ∈ [𝑢]𝑅𝑢𝑅𝐴))
3 elecALTV 36332 . . . 4 ((𝑢 ∈ V ∧ 𝐵𝑊) → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
43el2v1 36297 . . 3 (𝐵𝑊 → (𝐵 ∈ [𝑢]𝑅𝑢𝑅𝐵))
52, 4bi2anan9 635 . 2 ((𝐴𝑉𝐵𝑊) → ((𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴𝑢𝑅𝐵)))
65exbidv 1925 1 ((𝐴𝑉𝐵𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴𝑢𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1783  wcel 2108  Vcvv 3422   class class class wbr 5070  [cec 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458
This theorem is referenced by:  brcoss2  36482
  Copyright terms: Public domain W3C validator