Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > exan3 | Structured version Visualization version GIF version |
Description: Equivalent expressions with existential quantification. (Contributed by Peter Mazsa, 10-Sep-2021.) |
Ref | Expression |
---|---|
exan3 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elecALTV 36332 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) | |
2 | 1 | el2v1 36297 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐴)) |
3 | elecALTV 36332 | . . . 4 ⊢ ((𝑢 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) | |
4 | 3 | el2v1 36297 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (𝐵 ∈ [𝑢]𝑅 ↔ 𝑢𝑅𝐵)) |
5 | 2, 4 | bi2anan9 635 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ (𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
6 | 5 | exbidv 1925 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑢(𝐴 ∈ [𝑢]𝑅 ∧ 𝐵 ∈ [𝑢]𝑅) ↔ ∃𝑢(𝑢𝑅𝐴 ∧ 𝑢𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 [cec 8454 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 |
This theorem is referenced by: brcoss2 36482 |
Copyright terms: Public domain | W3C validator |