Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcosscnv Structured version   Visualization version   GIF version

Theorem brcosscnv 38495
Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.)
Assertion
Ref Expression
brcosscnv ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem brcosscnv
StepHypRef Expression
1 brcoss 38454 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵)))
2 brcnvg 5864 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥𝑅𝐴𝐴𝑅𝑥))
32el2v1 38246 . . . 4 (𝐴𝑉 → (𝑥𝑅𝐴𝐴𝑅𝑥))
4 brcnvg 5864 . . . . 5 ((𝑥 ∈ V ∧ 𝐵𝑊) → (𝑥𝑅𝐵𝐵𝑅𝑥))
54el2v1 38246 . . . 4 (𝐵𝑊 → (𝑥𝑅𝐵𝐵𝑅𝑥))
63, 5bi2anan9 638 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥𝑅𝐴𝑥𝑅𝐵) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
76exbidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
81, 7bitrd 279 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3464   class class class wbr 5124  ccnv 5658  ccoss 38204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-cnv 5667  df-coss 38434
This theorem is referenced by:  brcosscnv2  38496  br1cosscnvxrn  38497
  Copyright terms: Public domain W3C validator