| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnv | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
| Ref | Expression |
|---|---|
| brcosscnv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brcoss 38532 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵))) | |
| 2 | brcnvg 5818 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) | |
| 3 | 2 | el2v1 38263 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) |
| 4 | brcnvg 5818 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) | |
| 5 | 4 | el2v1 38263 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) |
| 6 | 3, 5 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
| 7 | 6 | exbidv 1922 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
| 8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ◡ccnv 5613 ≀ ccoss 38221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-coss 38512 |
| This theorem is referenced by: brcosscnv2 38574 br1cosscnvxrn 38575 |
| Copyright terms: Public domain | W3C validator |