|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnv | Structured version Visualization version GIF version | ||
| Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) | 
| Ref | Expression | 
|---|---|
| brcosscnv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brcoss 38432 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵))) | |
| 2 | brcnvg 5890 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) | |
| 3 | 2 | el2v1 38224 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) | 
| 4 | brcnvg 5890 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) | |
| 5 | 4 | el2v1 38224 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) | 
| 6 | 3, 5 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | 
| 7 | 6 | exbidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | 
| 8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 ◡ccnv 5684 ≀ ccoss 38182 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-cnv 5693 df-coss 38412 | 
| This theorem is referenced by: brcosscnv2 38474 br1cosscnvxrn 38475 | 
| Copyright terms: Public domain | W3C validator |