Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcosscnv Structured version   Visualization version   GIF version

Theorem brcosscnv 36590
Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.)
Assertion
Ref Expression
brcosscnv ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem brcosscnv
StepHypRef Expression
1 brcoss 36554 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵)))
2 brcnvg 5788 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥𝑅𝐴𝐴𝑅𝑥))
32el2v1 36370 . . . 4 (𝐴𝑉 → (𝑥𝑅𝐴𝐴𝑅𝑥))
4 brcnvg 5788 . . . . 5 ((𝑥 ∈ V ∧ 𝐵𝑊) → (𝑥𝑅𝐵𝐵𝑅𝑥))
54el2v1 36370 . . . 4 (𝐵𝑊 → (𝑥𝑅𝐵𝐵𝑅𝑥))
63, 5bi2anan9 636 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥𝑅𝐴𝑥𝑅𝐵) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
76exbidv 1924 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
81, 7bitrd 278 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074  ccnv 5588  ccoss 36333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-coss 36537
This theorem is referenced by:  brcosscnv2  36591  br1cosscnvxrn  36592
  Copyright terms: Public domain W3C validator