Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcosscnv Structured version   Visualization version   GIF version

Theorem brcosscnv 35716
Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.)
Assertion
Ref Expression
brcosscnv ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem brcosscnv
StepHypRef Expression
1 brcoss 35680 . 2 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵)))
2 brcnvg 5753 . . . . 5 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥𝑅𝐴𝐴𝑅𝑥))
32el2v1 35494 . . . 4 (𝐴𝑉 → (𝑥𝑅𝐴𝐴𝑅𝑥))
4 brcnvg 5753 . . . . 5 ((𝑥 ∈ V ∧ 𝐵𝑊) → (𝑥𝑅𝐵𝐵𝑅𝑥))
54el2v1 35494 . . . 4 (𝐵𝑊 → (𝑥𝑅𝐵𝐵𝑅𝑥))
63, 5bi2anan9 637 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥𝑅𝐴𝑥𝑅𝐵) ↔ (𝐴𝑅𝑥𝐵𝑅𝑥)))
76exbidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∃𝑥(𝑥𝑅𝐴𝑥𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
81, 7bitrd 281 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wex 1779  wcel 2113  Vcvv 3497   class class class wbr 5069  ccnv 5557  ccoss 35457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-cnv 5566  df-coss 35663
This theorem is referenced by:  brcosscnv2  35717  br1cosscnvxrn  35718
  Copyright terms: Public domain W3C validator