![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnv | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
Ref | Expression |
---|---|
brcosscnv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss 36939 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵))) | |
2 | brcnvg 5836 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) | |
3 | 2 | el2v1 36722 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) |
4 | brcnvg 5836 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) | |
5 | 4 | el2v1 36722 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) |
6 | 3, 5 | bi2anan9 638 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
7 | 6 | exbidv 1925 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
8 | 1, 7 | bitrd 279 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 Vcvv 3444 class class class wbr 5106 ◡ccnv 5633 ≀ ccoss 36680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-cnv 5642 df-coss 36919 |
This theorem is referenced by: brcosscnv2 36981 br1cosscnvxrn 36982 |
Copyright terms: Public domain | W3C validator |