![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcosscnv | Structured version Visualization version GIF version |
Description: 𝐴 and 𝐵 are cosets by converse 𝑅: a binary relation. (Contributed by Peter Mazsa, 23-Jan-2019.) |
Ref | Expression |
---|---|
brcosscnv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss 37296 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵))) | |
2 | brcnvg 5879 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) | |
3 | 2 | el2v1 37080 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥◡𝑅𝐴 ↔ 𝐴𝑅𝑥)) |
4 | brcnvg 5879 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑊) → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) | |
5 | 4 | el2v1 37080 | . . . 4 ⊢ (𝐵 ∈ 𝑊 → (𝑥◡𝑅𝐵 ↔ 𝐵𝑅𝑥)) |
6 | 3, 5 | bi2anan9 637 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ (𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
7 | 6 | exbidv 1924 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∃𝑥(𝑥◡𝑅𝐴 ∧ 𝑥◡𝑅𝐵) ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
8 | 1, 7 | bitrd 278 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ◡𝑅𝐵 ↔ ∃𝑥(𝐴𝑅𝑥 ∧ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 class class class wbr 5148 ◡ccnv 5675 ≀ ccoss 37038 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 df-coss 37276 |
This theorem is referenced by: brcosscnv2 37338 br1cosscnvxrn 37339 |
Copyright terms: Public domain | W3C validator |