Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecin0 Structured version   Visualization version   GIF version

Theorem ecin0 36484
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.)
Assertion
Ref Expression
ecin0 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ecin0
StepHypRef Expression
1 disj1 4384 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅))
2 elecg 8541 . . . . . 6 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
32el2v1 36370 . . . . 5 (𝐴𝑉 → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
43adantr 481 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
5 elecALTV 36405 . . . . . . 7 ((𝐵𝑊𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
65elvd 3439 . . . . . 6 (𝐵𝑊 → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
76adantl 482 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
87notbid 318 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥))
94, 8imbi12d 345 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
109albidv 1923 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
111, 10syl5bb 283 1 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  c0 4256   class class class wbr 5074  [cec 8496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500
This theorem is referenced by:  ecinn0  36485
  Copyright terms: Public domain W3C validator