Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecin0 Structured version   Visualization version   GIF version

Theorem ecin0 35724
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.)
Assertion
Ref Expression
ecin0 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ecin0
StepHypRef Expression
1 disj1 4373 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅))
2 elecg 8319 . . . . . 6 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
32el2v1 35608 . . . . 5 (𝐴𝑉 → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
43adantr 484 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
5 elecALTV 35645 . . . . . . 7 ((𝐵𝑊𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
65elvd 3475 . . . . . 6 (𝐵𝑊 → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
76adantl 485 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
87notbid 321 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥))
94, 8imbi12d 348 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
109albidv 1921 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
111, 10syl5bb 286 1 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2114  Vcvv 3469  cin 3907  c0 4265   class class class wbr 5042  [cec 8274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-sn 4540  df-pr 4542  df-op 4546  df-br 5043  df-opab 5105  df-xp 5538  df-cnv 5540  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-ec 8278
This theorem is referenced by:  ecinn0  35725
  Copyright terms: Public domain W3C validator