Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ecin0 Structured version   Visualization version   GIF version

Theorem ecin0 38320
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.)
Assertion
Ref Expression
ecin0 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉   𝑥,𝑊

Proof of Theorem ecin0
StepHypRef Expression
1 disj1 4403 . 2 (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅))
2 elecg 8669 . . . . . 6 ((𝑥 ∈ V ∧ 𝐴𝑉) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
32el2v1 38197 . . . . 5 (𝐴𝑉 → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
43adantr 480 . . . 4 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐴]𝑅𝐴𝑅𝑥))
5 elecALTV 38241 . . . . . . 7 ((𝐵𝑊𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
65elvd 3442 . . . . . 6 (𝐵𝑊 → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
76adantl 481 . . . . 5 ((𝐴𝑉𝐵𝑊) → (𝑥 ∈ [𝐵]𝑅𝐵𝑅𝑥))
87notbid 318 . . . 4 ((𝐴𝑉𝐵𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥))
94, 8imbi12d 344 . . 3 ((𝐴𝑉𝐵𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
109albidv 1920 . 2 ((𝐴𝑉𝐵𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
111, 10bitrid 283 1 ((𝐴𝑉𝐵𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  c0 4284   class class class wbr 5092  [cec 8623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627
This theorem is referenced by:  ecinn0  38321
  Copyright terms: Public domain W3C validator