Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ecin0 | Structured version Visualization version GIF version |
Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.) |
Ref | Expression |
---|---|
ecin0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disj1 4384 | . 2 ⊢ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅)) | |
2 | elecg 8541 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
3 | 2 | el2v1 36370 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
4 | 3 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
5 | elecALTV 36405 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) | |
6 | 5 | elvd 3439 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
7 | 6 | adantl 482 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
8 | 7 | notbid 318 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥)) |
9 | 4, 8 | imbi12d 345 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
10 | 9 | albidv 1923 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
11 | 1, 10 | syl5bb 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ∅c0 4256 class class class wbr 5074 [cec 8496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ec 8500 |
This theorem is referenced by: ecinn0 36485 |
Copyright terms: Public domain | W3C validator |