| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ecin0 | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that the coset of 𝐴 and the coset of 𝐵 have no elements in common. (Contributed by Peter Mazsa, 1-Dec-2018.) |
| Ref | Expression |
|---|---|
| ecin0 | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 4399 | . 2 ⊢ (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅)) | |
| 2 | elecg 8666 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) | |
| 3 | 2 | el2v1 38265 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐴]𝑅 ↔ 𝐴𝑅𝑥)) |
| 5 | elecALTV 38309 | . . . . . . 7 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝑥 ∈ V) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) | |
| 6 | 5 | elvd 3442 | . . . . . 6 ⊢ (𝐵 ∈ 𝑊 → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ [𝐵]𝑅 ↔ 𝐵𝑅𝑥)) |
| 8 | 7 | notbid 318 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (¬ 𝑥 ∈ [𝐵]𝑅 ↔ ¬ 𝐵𝑅𝑥)) |
| 9 | 4, 8 | imbi12d 344 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ (𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
| 10 | 9 | albidv 1921 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥(𝑥 ∈ [𝐴]𝑅 → ¬ 𝑥 ∈ [𝐵]𝑅) ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
| 11 | 1, 10 | bitrid 283 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (([𝐴]𝑅 ∩ [𝐵]𝑅) = ∅ ↔ ∀𝑥(𝐴𝑅𝑥 → ¬ 𝐵𝑅𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∩ cin 3896 ∅c0 4280 class class class wbr 5089 [cec 8620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ec 8624 |
| This theorem is referenced by: ecinn0 38389 |
| Copyright terms: Public domain | W3C validator |