![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldm1cossres2 | Structured version Visualization version GIF version |
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.) |
Ref | Expression |
---|---|
eldm1cossres2 | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldm1cossres 34552 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) | |
2 | elecALTV 34373 | . . . 4 ⊢ ((𝑥 ∈ V ∧ 𝐵 ∈ 𝑉) → (𝐵 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐵)) | |
3 | 2 | el2v1 34330 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐵)) |
4 | 3 | rexbidv 3200 | . 2 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅 ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
5 | 1, 4 | bitr4d 271 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom ≀ (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝐵 ∈ [𝑥]𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2145 ∃wrex 3062 Vcvv 3351 class class class wbr 4786 dom cdm 5249 ↾ cres 5251 [cec 7894 ≀ ccoss 34315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-sep 4915 ax-nul 4923 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 835 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3353 df-sbc 3588 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-nul 4064 df-if 4226 df-sn 4317 df-pr 4319 df-op 4323 df-br 4787 df-opab 4847 df-xp 5255 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-ec 7898 df-coss 34511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |