Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm1cossres2 Structured version   Visualization version   GIF version

Theorem eldm1cossres2 38477
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
eldm1cossres2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem eldm1cossres2
StepHypRef Expression
1 eldm1cossres 38476 . 2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
2 elecALTV 38280 . . . 4 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
32el2v1 38236 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
43rexbidv 3154 . 2 (𝐵𝑉 → (∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
51, 4bitr4d 282 1 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2110  wrex 3054  Vcvv 3434   class class class wbr 5089  dom cdm 5614  cres 5616  [cec 8615  ccoss 38194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-sn 4575  df-pr 4577  df-op 4581  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-ec 8619  df-coss 38427
This theorem is referenced by:  eldmqs1cossres  38676
  Copyright terms: Public domain W3C validator