Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm1cossres2 Structured version   Visualization version   GIF version

Theorem eldm1cossres2 37985
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
eldm1cossres2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem eldm1cossres2
StepHypRef Expression
1 eldm1cossres 37984 . 2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
2 elecALTV 37790 . . . 4 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
32el2v1 37743 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
43rexbidv 3169 . 2 (𝐵𝑉 → (∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
51, 4bitr4d 281 1 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wrex 3060  Vcvv 3463   class class class wbr 5144  dom cdm 5673  cres 5675  [cec 8716  ccoss 37701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pr 5424
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-sn 4626  df-pr 4628  df-op 4632  df-br 5145  df-opab 5207  df-xp 5679  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-ec 8720  df-coss 37935
This theorem is referenced by:  eldmqs1cossres  38183
  Copyright terms: Public domain W3C validator