Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldm1cossres2 Structured version   Visualization version   GIF version

Theorem eldm1cossres2 38569
Description: Elementhood in the domain of restricted cosets. (Contributed by Peter Mazsa, 30-Dec-2018.)
Assertion
Ref Expression
eldm1cossres2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem eldm1cossres2
StepHypRef Expression
1 eldm1cossres 38568 . 2 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
2 elecALTV 38309 . . . 4 ((𝑥 ∈ V ∧ 𝐵𝑉) → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
32el2v1 38270 . . 3 (𝐵𝑉 → (𝐵 ∈ [𝑥]𝑅𝑥𝑅𝐵))
43rexbidv 3156 . 2 (𝐵𝑉 → (∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅 ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
51, 4bitr4d 282 1 (𝐵𝑉 → (𝐵 ∈ dom ≀ (𝑅𝐴) ↔ ∃𝑥𝐴 𝐵 ∈ [𝑥]𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2111  wrex 3056  Vcvv 3436   class class class wbr 5093  dom cdm 5619  cres 5621  [cec 8626  ccoss 38228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8630  df-coss 38519
This theorem is referenced by:  eldmqs1cossres  38763
  Copyright terms: Public domain W3C validator