Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqsel | Structured version Visualization version GIF version |
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
Ref | Expression |
---|---|
eqvrelqsel | ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2827 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝐶 ∈ 𝐵)) | |
3 | eqeq1 2742 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅 ↔ 𝐵 = [𝐶]𝑅)) | |
4 | 2, 3 | imbi12d 344 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅))) |
5 | elecALTV 36332 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝐶 ∈ [𝑥]𝑅) → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) | |
6 | 5 | el2v1 36297 | . . . . 5 ⊢ (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) |
7 | 6 | ibi 266 | . . . 4 ⊢ (𝐶 ∈ [𝑥]𝑅 → 𝑥𝑅𝐶) |
8 | simpll 763 | . . . . . 6 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → EqvRel 𝑅) | |
9 | simpr 484 | . . . . . 6 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶) | |
10 | 8, 9 | eqvrelthi 36653 | . . . . 5 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅) |
11 | 10 | ex 412 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅)) |
12 | 7, 11 | syl5 34 | . . 3 ⊢ (( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅)) |
13 | 1, 4, 12 | ectocld 8531 | . 2 ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅)) |
14 | 13 | 3impia 1115 | 1 ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 [cec 8454 / cqs 8455 EqvRel weqvrel 36277 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ec 8458 df-qs 8462 df-refrel 36557 df-symrel 36585 df-trrel 36615 df-eqvrel 36625 |
This theorem is referenced by: erim2 36716 |
Copyright terms: Public domain | W3C validator |