![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelqsel | Structured version Visualization version GIF version |
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.) (Revised by Peter Mazsa, 28-Dec-2019.) |
Ref | Expression |
---|---|
eqvrelqsel | ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (𝐴 / 𝑅) = (𝐴 / 𝑅) | |
2 | eleq2 2823 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝐶 ∈ 𝐵)) | |
3 | eqeq1 2737 | . . . 4 ⊢ ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅 ↔ 𝐵 = [𝐶]𝑅)) | |
4 | 2, 3 | imbi12d 345 | . . 3 ⊢ ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅))) |
5 | elecALTV 37134 | . . . . . 6 ⊢ ((𝑥 ∈ V ∧ 𝐶 ∈ [𝑥]𝑅) → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) | |
6 | 5 | el2v1 37085 | . . . . 5 ⊢ (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅 ↔ 𝑥𝑅𝐶)) |
7 | 6 | ibi 267 | . . . 4 ⊢ (𝐶 ∈ [𝑥]𝑅 → 𝑥𝑅𝐶) |
8 | simpll 766 | . . . . . 6 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → EqvRel 𝑅) | |
9 | simpr 486 | . . . . . 6 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶) | |
10 | 8, 9 | eqvrelthi 37483 | . . . . 5 ⊢ ((( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅) |
11 | 10 | ex 414 | . . . 4 ⊢ (( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅)) |
12 | 7, 11 | syl5 34 | . . 3 ⊢ (( EqvRel 𝑅 ∧ 𝑥 ∈ 𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅)) |
13 | 1, 4, 12 | ectocld 8778 | . 2 ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅)) → (𝐶 ∈ 𝐵 → 𝐵 = [𝐶]𝑅)) |
14 | 13 | 3impia 1118 | 1 ⊢ (( EqvRel 𝑅 ∧ 𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶 ∈ 𝐵) → 𝐵 = [𝐶]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 [cec 8701 / cqs 8702 EqvRel weqvrel 37060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ec 8705 df-qs 8709 df-refrel 37382 df-symrel 37414 df-trrel 37444 df-eqvrel 37455 |
This theorem is referenced by: erimeq2 37548 |
Copyright terms: Public domain | W3C validator |