Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodex01 Structured version   Visualization version   GIF version

Theorem fprodex01 32750
Description: A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
fprodex01.1 (𝑘 = 𝑙𝐵 = 𝐶)
fprodex01.a (𝜑𝐴 ∈ Fin)
fprodex01.b ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
Assertion
Ref Expression
fprodex01 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Distinct variable groups:   𝐴,𝑘,𝑙   𝐵,𝑙   𝐶,𝑘   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑙)

Proof of Theorem fprodex01
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑙𝐴 𝐶 = 1)
2 fprodex01.1 . . . . . . . 8 (𝑘 = 𝑙𝐵 = 𝐶)
32eqeq1d 2737 . . . . . . 7 (𝑘 = 𝑙 → (𝐵 = 1 ↔ 𝐶 = 1))
43cbvralvw 3220 . . . . . 6 (∀𝑘𝐴 𝐵 = 1 ↔ ∀𝑙𝐴 𝐶 = 1)
51, 4sylibr 234 . . . . 5 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑘𝐴 𝐵 = 1)
65prodeq2d 15935 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 1)
7 fprodex01.a . . . . . 6 (𝜑𝐴 ∈ Fin)
8 prod1 15958 . . . . . . 7 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
98olcs 876 . . . . . 6 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
107, 9syl 17 . . . . 5 (𝜑 → ∏𝑘𝐴 1 = 1)
1110adantr 480 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 1 = 1)
126, 11eqtr2d 2771 . . 3 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → 1 = ∏𝑘𝐴 𝐵)
13 nfv 1914 . . . . . 6 𝑙𝜑
14 nfra1 3266 . . . . . . 7 𝑙𝑙𝐴 𝐶 = 1
1514nfn 1857 . . . . . 6 𝑙 ¬ ∀𝑙𝐴 𝐶 = 1
1613, 15nfan 1899 . . . . 5 𝑙(𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1)
17 nfv 1914 . . . . 5 𝑙𝑘𝐴 𝐵 = 0
187adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 𝐴 ∈ Fin)
1918ad2antrr 726 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐴 ∈ Fin)
20 pr01ssre 32749 . . . . . . . . . . 11 {0, 1} ⊆ ℝ
21 ax-resscn 11184 . . . . . . . . . . 11 ℝ ⊆ ℂ
2220, 21sstri 3968 . . . . . . . . . 10 {0, 1} ⊆ ℂ
23 fprodex01.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
2422, 23sselid 3956 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2524adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2625adantlr 715 . . . . . . 7 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2726adantlr 715 . . . . . 6 (((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 768 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝑙𝐴)
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐶 = 0)
302, 19, 27, 28, 29fprodeq02 32748 . . . . 5 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → ∏𝑘𝐴 𝐵 = 0)
31 rexnal 3089 . . . . . . . 8 (∃𝑙𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀𝑙𝐴 𝐶 = 1)
3231biimpri 228 . . . . . . 7 (¬ ∀𝑙𝐴 𝐶 = 1 → ∃𝑙𝐴 ¬ 𝐶 = 1)
3332adantl 481 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 ¬ 𝐶 = 1)
3423ralrimiva 3132 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ {0, 1})
352eleq1d 2819 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐵 ∈ {0, 1} ↔ 𝐶 ∈ {0, 1}))
3635cbvralvw 3220 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ {0, 1} ↔ ∀𝑙𝐴 𝐶 ∈ {0, 1})
3734, 36sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑙𝐴 𝐶 ∈ {0, 1})
3837r19.21bi 3234 . . . . . . . . . . 11 ((𝜑𝑙𝐴) → 𝐶 ∈ {0, 1})
39 c0ex 11227 . . . . . . . . . . . 12 0 ∈ V
40 1ex 11229 . . . . . . . . . . . 12 1 ∈ V
4139, 40elpr2 4628 . . . . . . . . . . 11 (𝐶 ∈ {0, 1} ↔ (𝐶 = 0 ∨ 𝐶 = 1))
4238, 41sylib 218 . . . . . . . . . 10 ((𝜑𝑙𝐴) → (𝐶 = 0 ∨ 𝐶 = 1))
4342orcomd 871 . . . . . . . . 9 ((𝜑𝑙𝐴) → (𝐶 = 1 ∨ 𝐶 = 0))
4443ord 864 . . . . . . . 8 ((𝜑𝑙𝐴) → (¬ 𝐶 = 1 → 𝐶 = 0))
4544reximdva 3153 . . . . . . 7 (𝜑 → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4645adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4733, 46mpd 15 . . . . 5 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 𝐶 = 0)
4816, 17, 30, 47r19.29af2 3250 . . . 4 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = 0)
4948eqcomd 2741 . . 3 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 0 = ∏𝑘𝐴 𝐵)
5012, 49ifeqda 4537 . 2 (𝜑 → if(∀𝑙𝐴 𝐶 = 1, 1, 0) = ∏𝑘𝐴 𝐵)
5150eqcomd 2741 1 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  ifcif 4500  {cpr 4603  cfv 6530  Fincfn 8957  cc 11125  cr 11126  0cc0 11127  1c1 11128  cuz 12850  cprod 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-inf2 9653  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7860  df-1st 7986  df-2nd 7987  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-div 11893  df-nn 12239  df-2 12301  df-3 12302  df-n0 12500  df-z 12587  df-uz 12851  df-rp 13007  df-fz 13523  df-fzo 13670  df-seq 14018  df-exp 14078  df-hash 14347  df-cj 15116  df-re 15117  df-im 15118  df-sqrt 15252  df-abs 15253  df-clim 15502  df-prod 15918
This theorem is referenced by:  prodindf  32786
  Copyright terms: Public domain W3C validator