Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodex01 Structured version   Visualization version   GIF version

Theorem fprodex01 32757
Description: A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
fprodex01.1 (𝑘 = 𝑙𝐵 = 𝐶)
fprodex01.a (𝜑𝐴 ∈ Fin)
fprodex01.b ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
Assertion
Ref Expression
fprodex01 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Distinct variable groups:   𝐴,𝑘,𝑙   𝐵,𝑙   𝐶,𝑘   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑙)

Proof of Theorem fprodex01
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑙𝐴 𝐶 = 1)
2 fprodex01.1 . . . . . . . 8 (𝑘 = 𝑙𝐵 = 𝐶)
32eqeq1d 2732 . . . . . . 7 (𝑘 = 𝑙 → (𝐵 = 1 ↔ 𝐶 = 1))
43cbvralvw 3216 . . . . . 6 (∀𝑘𝐴 𝐵 = 1 ↔ ∀𝑙𝐴 𝐶 = 1)
51, 4sylibr 234 . . . . 5 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑘𝐴 𝐵 = 1)
65prodeq2d 15894 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 1)
7 fprodex01.a . . . . . 6 (𝜑𝐴 ∈ Fin)
8 prod1 15917 . . . . . . 7 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
98olcs 876 . . . . . 6 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
107, 9syl 17 . . . . 5 (𝜑 → ∏𝑘𝐴 1 = 1)
1110adantr 480 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 1 = 1)
126, 11eqtr2d 2766 . . 3 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → 1 = ∏𝑘𝐴 𝐵)
13 nfv 1914 . . . . . 6 𝑙𝜑
14 nfra1 3262 . . . . . . 7 𝑙𝑙𝐴 𝐶 = 1
1514nfn 1857 . . . . . 6 𝑙 ¬ ∀𝑙𝐴 𝐶 = 1
1613, 15nfan 1899 . . . . 5 𝑙(𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1)
17 nfv 1914 . . . . 5 𝑙𝑘𝐴 𝐵 = 0
187adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 𝐴 ∈ Fin)
1918ad2antrr 726 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐴 ∈ Fin)
20 pr01ssre 32756 . . . . . . . . . . 11 {0, 1} ⊆ ℝ
21 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
2220, 21sstri 3959 . . . . . . . . . 10 {0, 1} ⊆ ℂ
23 fprodex01.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
2422, 23sselid 3947 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2524adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2625adantlr 715 . . . . . . 7 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2726adantlr 715 . . . . . 6 (((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 768 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝑙𝐴)
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐶 = 0)
302, 19, 27, 28, 29fprodeq02 32755 . . . . 5 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → ∏𝑘𝐴 𝐵 = 0)
31 rexnal 3083 . . . . . . . 8 (∃𝑙𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀𝑙𝐴 𝐶 = 1)
3231biimpri 228 . . . . . . 7 (¬ ∀𝑙𝐴 𝐶 = 1 → ∃𝑙𝐴 ¬ 𝐶 = 1)
3332adantl 481 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 ¬ 𝐶 = 1)
3423ralrimiva 3126 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ {0, 1})
352eleq1d 2814 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐵 ∈ {0, 1} ↔ 𝐶 ∈ {0, 1}))
3635cbvralvw 3216 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ {0, 1} ↔ ∀𝑙𝐴 𝐶 ∈ {0, 1})
3734, 36sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑙𝐴 𝐶 ∈ {0, 1})
3837r19.21bi 3230 . . . . . . . . . . 11 ((𝜑𝑙𝐴) → 𝐶 ∈ {0, 1})
39 c0ex 11175 . . . . . . . . . . . 12 0 ∈ V
40 1ex 11177 . . . . . . . . . . . 12 1 ∈ V
4139, 40elpr2 4619 . . . . . . . . . . 11 (𝐶 ∈ {0, 1} ↔ (𝐶 = 0 ∨ 𝐶 = 1))
4238, 41sylib 218 . . . . . . . . . 10 ((𝜑𝑙𝐴) → (𝐶 = 0 ∨ 𝐶 = 1))
4342orcomd 871 . . . . . . . . 9 ((𝜑𝑙𝐴) → (𝐶 = 1 ∨ 𝐶 = 0))
4443ord 864 . . . . . . . 8 ((𝜑𝑙𝐴) → (¬ 𝐶 = 1 → 𝐶 = 0))
4544reximdva 3147 . . . . . . 7 (𝜑 → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4645adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4733, 46mpd 15 . . . . 5 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 𝐶 = 0)
4816, 17, 30, 47r19.29af2 3246 . . . 4 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = 0)
4948eqcomd 2736 . . 3 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 0 = ∏𝑘𝐴 𝐵)
5012, 49ifeqda 4528 . 2 (𝜑 → if(∀𝑙𝐴 𝐶 = 1, 1, 0) = ∏𝑘𝐴 𝐵)
5150eqcomd 2736 1 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  ifcif 4491  {cpr 4594  cfv 6514  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076  cuz 12800  cprod 15876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-prod 15877
This theorem is referenced by:  prodindf  32793
  Copyright terms: Public domain W3C validator