Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodex01 Structured version   Visualization version   GIF version

Theorem fprodex01 31721
Description: A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
fprodex01.1 (𝑘 = 𝑙𝐵 = 𝐶)
fprodex01.a (𝜑𝐴 ∈ Fin)
fprodex01.b ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
Assertion
Ref Expression
fprodex01 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Distinct variable groups:   𝐴,𝑘,𝑙   𝐵,𝑙   𝐶,𝑘   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑙)

Proof of Theorem fprodex01
StepHypRef Expression
1 simpr 485 . . . . . 6 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑙𝐴 𝐶 = 1)
2 fprodex01.1 . . . . . . . 8 (𝑘 = 𝑙𝐵 = 𝐶)
32eqeq1d 2738 . . . . . . 7 (𝑘 = 𝑙 → (𝐵 = 1 ↔ 𝐶 = 1))
43cbvralvw 3225 . . . . . 6 (∀𝑘𝐴 𝐵 = 1 ↔ ∀𝑙𝐴 𝐶 = 1)
51, 4sylibr 233 . . . . 5 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑘𝐴 𝐵 = 1)
65prodeq2d 15805 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 1)
7 fprodex01.a . . . . . 6 (𝜑𝐴 ∈ Fin)
8 prod1 15827 . . . . . . 7 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
98olcs 874 . . . . . 6 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
107, 9syl 17 . . . . 5 (𝜑 → ∏𝑘𝐴 1 = 1)
1110adantr 481 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 1 = 1)
126, 11eqtr2d 2777 . . 3 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → 1 = ∏𝑘𝐴 𝐵)
13 nfv 1917 . . . . . 6 𝑙𝜑
14 nfra1 3267 . . . . . . 7 𝑙𝑙𝐴 𝐶 = 1
1514nfn 1860 . . . . . 6 𝑙 ¬ ∀𝑙𝐴 𝐶 = 1
1613, 15nfan 1902 . . . . 5 𝑙(𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1)
17 nfv 1917 . . . . 5 𝑙𝑘𝐴 𝐵 = 0
187adantr 481 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 𝐴 ∈ Fin)
1918ad2antrr 724 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐴 ∈ Fin)
20 pr01ssre 31720 . . . . . . . . . . 11 {0, 1} ⊆ ℝ
21 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
2220, 21sstri 3953 . . . . . . . . . 10 {0, 1} ⊆ ℂ
23 fprodex01.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
2422, 23sselid 3942 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2524adantlr 713 . . . . . . . 8 (((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2625adantlr 713 . . . . . . 7 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2726adantlr 713 . . . . . 6 (((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 767 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝑙𝐴)
29 simpr 485 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐶 = 0)
302, 19, 27, 28, 29fprodeq02 31719 . . . . 5 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → ∏𝑘𝐴 𝐵 = 0)
31 rexnal 3103 . . . . . . . 8 (∃𝑙𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀𝑙𝐴 𝐶 = 1)
3231biimpri 227 . . . . . . 7 (¬ ∀𝑙𝐴 𝐶 = 1 → ∃𝑙𝐴 ¬ 𝐶 = 1)
3332adantl 482 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 ¬ 𝐶 = 1)
3423ralrimiva 3143 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ {0, 1})
352eleq1d 2822 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐵 ∈ {0, 1} ↔ 𝐶 ∈ {0, 1}))
3635cbvralvw 3225 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ {0, 1} ↔ ∀𝑙𝐴 𝐶 ∈ {0, 1})
3734, 36sylib 217 . . . . . . . . . . . 12 (𝜑 → ∀𝑙𝐴 𝐶 ∈ {0, 1})
3837r19.21bi 3234 . . . . . . . . . . 11 ((𝜑𝑙𝐴) → 𝐶 ∈ {0, 1})
39 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
40 1ex 11151 . . . . . . . . . . . 12 1 ∈ V
4139, 40elpr2 4611 . . . . . . . . . . 11 (𝐶 ∈ {0, 1} ↔ (𝐶 = 0 ∨ 𝐶 = 1))
4238, 41sylib 217 . . . . . . . . . 10 ((𝜑𝑙𝐴) → (𝐶 = 0 ∨ 𝐶 = 1))
4342orcomd 869 . . . . . . . . 9 ((𝜑𝑙𝐴) → (𝐶 = 1 ∨ 𝐶 = 0))
4443ord 862 . . . . . . . 8 ((𝜑𝑙𝐴) → (¬ 𝐶 = 1 → 𝐶 = 0))
4544reximdva 3165 . . . . . . 7 (𝜑 → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4645adantr 481 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4733, 46mpd 15 . . . . 5 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 𝐶 = 0)
4816, 17, 30, 47r19.29af2 3250 . . . 4 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = 0)
4948eqcomd 2742 . . 3 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 0 = ∏𝑘𝐴 𝐵)
5012, 49ifeqda 4522 . 2 (𝜑 → if(∀𝑙𝐴 𝐶 = 1, 1, 0) = ∏𝑘𝐴 𝐵)
5150eqcomd 2742 1 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wral 3064  wrex 3073  wss 3910  ifcif 4486  {cpr 4588  cfv 6496  Fincfn 8883  cc 11049  cr 11050  0cc0 11051  1c1 11052  cuz 12763  cprod 15788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-prod 15789
This theorem is referenced by:  prodindf  32622
  Copyright terms: Public domain W3C validator