Proof of Theorem fprodex01
Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∀𝑙 ∈ 𝐴 𝐶 = 1) |
2 | | fprodex01.1 |
. . . . . . . 8
⊢ (𝑘 = 𝑙 → 𝐵 = 𝐶) |
3 | 2 | eqeq1d 2740 |
. . . . . . 7
⊢ (𝑘 = 𝑙 → (𝐵 = 1 ↔ 𝐶 = 1)) |
4 | 3 | cbvralvw 3372 |
. . . . . 6
⊢
(∀𝑘 ∈
𝐴 𝐵 = 1 ↔ ∀𝑙 ∈ 𝐴 𝐶 = 1) |
5 | 1, 4 | sylibr 233 |
. . . . 5
⊢ ((𝜑 ∧ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∀𝑘 ∈ 𝐴 𝐵 = 1) |
6 | 5 | prodeq2d 15560 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∏𝑘 ∈ 𝐴 𝐵 = ∏𝑘 ∈ 𝐴 1) |
7 | | fprodex01.a |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ Fin) |
8 | | prod1 15582 |
. . . . . . 7
⊢ ((𝐴 ⊆
(ℤ≥‘0) ∨ 𝐴 ∈ Fin) → ∏𝑘 ∈ 𝐴 1 = 1) |
9 | 8 | olcs 872 |
. . . . . 6
⊢ (𝐴 ∈ Fin → ∏𝑘 ∈ 𝐴 1 = 1) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 1 = 1) |
11 | 10 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∏𝑘 ∈ 𝐴 1 = 1) |
12 | 6, 11 | eqtr2d 2779 |
. . 3
⊢ ((𝜑 ∧ ∀𝑙 ∈ 𝐴 𝐶 = 1) → 1 = ∏𝑘 ∈ 𝐴 𝐵) |
13 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑙𝜑 |
14 | | nfra1 3142 |
. . . . . . 7
⊢
Ⅎ𝑙∀𝑙 ∈ 𝐴 𝐶 = 1 |
15 | 14 | nfn 1861 |
. . . . . 6
⊢
Ⅎ𝑙 ¬
∀𝑙 ∈ 𝐴 𝐶 = 1 |
16 | 13, 15 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑙(𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) |
17 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑙∏𝑘 ∈ 𝐴 𝐵 = 0 |
18 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → 𝐴 ∈ Fin) |
19 | 18 | ad2antrr 722 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝐶 = 0) → 𝐴 ∈ Fin) |
20 | | pr01ssre 31040 |
. . . . . . . . . . 11
⊢ {0, 1}
⊆ ℝ |
21 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
22 | 20, 21 | sstri 3926 |
. . . . . . . . . 10
⊢ {0, 1}
⊆ ℂ |
23 | | fprodex01.b |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ {0, 1}) |
24 | 22, 23 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
25 | 24 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
26 | 25 | adantlr 711 |
. . . . . . 7
⊢ ((((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
27 | 26 | adantlr 711 |
. . . . . 6
⊢
(((((𝜑 ∧ ¬
∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝐶 = 0) ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
28 | | simplr 765 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝐶 = 0) → 𝑙 ∈ 𝐴) |
29 | | simpr 484 |
. . . . . 6
⊢ ((((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝐶 = 0) → 𝐶 = 0) |
30 | 2, 19, 27, 28, 29 | fprodeq02 31039 |
. . . . 5
⊢ ((((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) ∧ 𝑙 ∈ 𝐴) ∧ 𝐶 = 0) → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
31 | | rexnal 3165 |
. . . . . . . 8
⊢
(∃𝑙 ∈
𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) |
32 | 31 | biimpri 227 |
. . . . . . 7
⊢ (¬
∀𝑙 ∈ 𝐴 𝐶 = 1 → ∃𝑙 ∈ 𝐴 ¬ 𝐶 = 1) |
33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∃𝑙 ∈ 𝐴 ¬ 𝐶 = 1) |
34 | 23 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ {0, 1}) |
35 | 2 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑙 → (𝐵 ∈ {0, 1} ↔ 𝐶 ∈ {0, 1})) |
36 | 35 | cbvralvw 3372 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ {0, 1} ↔ ∀𝑙 ∈ 𝐴 𝐶 ∈ {0, 1}) |
37 | 34, 36 | sylib 217 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑙 ∈ 𝐴 𝐶 ∈ {0, 1}) |
38 | 37 | r19.21bi 3132 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → 𝐶 ∈ {0, 1}) |
39 | | c0ex 10900 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
40 | | 1ex 10902 |
. . . . . . . . . . . 12
⊢ 1 ∈
V |
41 | 39, 40 | elpr2 4583 |
. . . . . . . . . . 11
⊢ (𝐶 ∈ {0, 1} ↔ (𝐶 = 0 ∨ 𝐶 = 1)) |
42 | 38, 41 | sylib 217 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → (𝐶 = 0 ∨ 𝐶 = 1)) |
43 | 42 | orcomd 867 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → (𝐶 = 1 ∨ 𝐶 = 0)) |
44 | 43 | ord 860 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑙 ∈ 𝐴) → (¬ 𝐶 = 1 → 𝐶 = 0)) |
45 | 44 | reximdva 3202 |
. . . . . . 7
⊢ (𝜑 → (∃𝑙 ∈ 𝐴 ¬ 𝐶 = 1 → ∃𝑙 ∈ 𝐴 𝐶 = 0)) |
46 | 45 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → (∃𝑙 ∈ 𝐴 ¬ 𝐶 = 1 → ∃𝑙 ∈ 𝐴 𝐶 = 0)) |
47 | 33, 46 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∃𝑙 ∈ 𝐴 𝐶 = 0) |
48 | 16, 17, 30, 47 | r19.29af2 3258 |
. . . 4
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
49 | 48 | eqcomd 2744 |
. . 3
⊢ ((𝜑 ∧ ¬ ∀𝑙 ∈ 𝐴 𝐶 = 1) → 0 = ∏𝑘 ∈ 𝐴 𝐵) |
50 | 12, 49 | ifeqda 4492 |
. 2
⊢ (𝜑 → if(∀𝑙 ∈ 𝐴 𝐶 = 1, 1, 0) = ∏𝑘 ∈ 𝐴 𝐵) |
51 | 50 | eqcomd 2744 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = if(∀𝑙 ∈ 𝐴 𝐶 = 1, 1, 0)) |