Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fprodex01 Structured version   Visualization version   GIF version

Theorem fprodex01 32750
Description: A product of factors equal to zero or one is zero exactly when one of the factors is zero. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
fprodex01.1 (𝑘 = 𝑙𝐵 = 𝐶)
fprodex01.a (𝜑𝐴 ∈ Fin)
fprodex01.b ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
Assertion
Ref Expression
fprodex01 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Distinct variable groups:   𝐴,𝑘,𝑙   𝐵,𝑙   𝐶,𝑘   𝜑,𝑘,𝑙
Allowed substitution hints:   𝐵(𝑘)   𝐶(𝑙)

Proof of Theorem fprodex01
StepHypRef Expression
1 simpr 484 . . . . . 6 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑙𝐴 𝐶 = 1)
2 fprodex01.1 . . . . . . . 8 (𝑘 = 𝑙𝐵 = 𝐶)
32eqeq1d 2731 . . . . . . 7 (𝑘 = 𝑙 → (𝐵 = 1 ↔ 𝐶 = 1))
43cbvralvw 3215 . . . . . 6 (∀𝑘𝐴 𝐵 = 1 ↔ ∀𝑙𝐴 𝐶 = 1)
51, 4sylibr 234 . . . . 5 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∀𝑘𝐴 𝐵 = 1)
65prodeq2d 15887 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 1)
7 fprodex01.a . . . . . 6 (𝜑𝐴 ∈ Fin)
8 prod1 15910 . . . . . . 7 ((𝐴 ⊆ (ℤ‘0) ∨ 𝐴 ∈ Fin) → ∏𝑘𝐴 1 = 1)
98olcs 876 . . . . . 6 (𝐴 ∈ Fin → ∏𝑘𝐴 1 = 1)
107, 9syl 17 . . . . 5 (𝜑 → ∏𝑘𝐴 1 = 1)
1110adantr 480 . . . 4 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 1 = 1)
126, 11eqtr2d 2765 . . 3 ((𝜑 ∧ ∀𝑙𝐴 𝐶 = 1) → 1 = ∏𝑘𝐴 𝐵)
13 nfv 1914 . . . . . 6 𝑙𝜑
14 nfra1 3261 . . . . . . 7 𝑙𝑙𝐴 𝐶 = 1
1514nfn 1857 . . . . . 6 𝑙 ¬ ∀𝑙𝐴 𝐶 = 1
1613, 15nfan 1899 . . . . 5 𝑙(𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1)
17 nfv 1914 . . . . 5 𝑙𝑘𝐴 𝐵 = 0
187adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 𝐴 ∈ Fin)
1918ad2antrr 726 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐴 ∈ Fin)
20 pr01ssre 32749 . . . . . . . . . . 11 {0, 1} ⊆ ℝ
21 ax-resscn 11125 . . . . . . . . . . 11 ℝ ⊆ ℂ
2220, 21sstri 3956 . . . . . . . . . 10 {0, 1} ⊆ ℂ
23 fprodex01.b . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ {0, 1})
2422, 23sselid 3944 . . . . . . . . 9 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
2524adantlr 715 . . . . . . . 8 (((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2625adantlr 715 . . . . . . 7 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
2726adantlr 715 . . . . . 6 (((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
28 simplr 768 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝑙𝐴)
29 simpr 484 . . . . . 6 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → 𝐶 = 0)
302, 19, 27, 28, 29fprodeq02 32748 . . . . 5 ((((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) ∧ 𝑙𝐴) ∧ 𝐶 = 0) → ∏𝑘𝐴 𝐵 = 0)
31 rexnal 3082 . . . . . . . 8 (∃𝑙𝐴 ¬ 𝐶 = 1 ↔ ¬ ∀𝑙𝐴 𝐶 = 1)
3231biimpri 228 . . . . . . 7 (¬ ∀𝑙𝐴 𝐶 = 1 → ∃𝑙𝐴 ¬ 𝐶 = 1)
3332adantl 481 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 ¬ 𝐶 = 1)
3423ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ {0, 1})
352eleq1d 2813 . . . . . . . . . . . . . 14 (𝑘 = 𝑙 → (𝐵 ∈ {0, 1} ↔ 𝐶 ∈ {0, 1}))
3635cbvralvw 3215 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ {0, 1} ↔ ∀𝑙𝐴 𝐶 ∈ {0, 1})
3734, 36sylib 218 . . . . . . . . . . . 12 (𝜑 → ∀𝑙𝐴 𝐶 ∈ {0, 1})
3837r19.21bi 3229 . . . . . . . . . . 11 ((𝜑𝑙𝐴) → 𝐶 ∈ {0, 1})
39 c0ex 11168 . . . . . . . . . . . 12 0 ∈ V
40 1ex 11170 . . . . . . . . . . . 12 1 ∈ V
4139, 40elpr2 4616 . . . . . . . . . . 11 (𝐶 ∈ {0, 1} ↔ (𝐶 = 0 ∨ 𝐶 = 1))
4238, 41sylib 218 . . . . . . . . . 10 ((𝜑𝑙𝐴) → (𝐶 = 0 ∨ 𝐶 = 1))
4342orcomd 871 . . . . . . . . 9 ((𝜑𝑙𝐴) → (𝐶 = 1 ∨ 𝐶 = 0))
4443ord 864 . . . . . . . 8 ((𝜑𝑙𝐴) → (¬ 𝐶 = 1 → 𝐶 = 0))
4544reximdva 3146 . . . . . . 7 (𝜑 → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4645adantr 480 . . . . . 6 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → (∃𝑙𝐴 ¬ 𝐶 = 1 → ∃𝑙𝐴 𝐶 = 0))
4733, 46mpd 15 . . . . 5 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∃𝑙𝐴 𝐶 = 0)
4816, 17, 30, 47r19.29af2 3245 . . . 4 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → ∏𝑘𝐴 𝐵 = 0)
4948eqcomd 2735 . . 3 ((𝜑 ∧ ¬ ∀𝑙𝐴 𝐶 = 1) → 0 = ∏𝑘𝐴 𝐵)
5012, 49ifeqda 4525 . 2 (𝜑 → if(∀𝑙𝐴 𝐶 = 1, 1, 0) = ∏𝑘𝐴 𝐵)
5150eqcomd 2735 1 (𝜑 → ∏𝑘𝐴 𝐵 = if(∀𝑙𝐴 𝐶 = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  wrex 3053  wss 3914  ifcif 4488  {cpr 4591  cfv 6511  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069  cuz 12793  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870
This theorem is referenced by:  prodindf  32786
  Copyright terms: Public domain W3C validator