MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   GIF version

Theorem elopg 5323
Description: Characterization of the elements of an ordered pair. Closed form of elop 5324. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4761 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 eleq2 2878 . . 3 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}}))
3 snex 5297 . . . 4 {𝐴} ∈ V
4 prex 5298 . . . 4 {𝐴, 𝐵} ∈ V
53, 4elpr2 4550 . . 3 (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))
62, 5syl6bb 290 . 2 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
71, 6syl 17 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  {csn 4525  {cpr 4527  cop 4531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532
This theorem is referenced by:  elop  5324  bj-inftyexpidisj  34625
  Copyright terms: Public domain W3C validator