Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopg | Structured version Visualization version GIF version |
Description: Characterization of the elements of an ordered pair. Closed form of elop 5376. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
elopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4799 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
2 | eleq2 2827 | . . 3 ⊢ (〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
3 | snex 5349 | . . . 4 ⊢ {𝐴} ∈ V | |
4 | prex 5350 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
5 | 3, 4 | elpr2 4583 | . . 3 ⊢ (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})) |
6 | 2, 5 | bitrdi 286 | . 2 ⊢ (〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
7 | 1, 6 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {csn 4558 {cpr 4560 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: elop 5376 bj-inftyexpidisj 35308 |
Copyright terms: Public domain | W3C validator |