MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   GIF version

Theorem elopg 5471
Description: Characterization of the elements of an ordered pair. Closed form of elop 5472. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4871 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 eleq2 2830 . . 3 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}}))
3 snex 5436 . . . 4 {𝐴} ∈ V
4 prex 5437 . . . 4 {𝐴, 𝐵} ∈ V
53, 4elpr2 4652 . . 3 (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))
62, 5bitrdi 287 . 2 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
71, 6syl 17 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  {csn 4626  {cpr 4628  cop 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633
This theorem is referenced by:  elop  5472  bj-inftyexpidisj  37211
  Copyright terms: Public domain W3C validator