MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   GIF version

Theorem elopg 5465
Description: Characterization of the elements of an ordered pair. Closed form of elop 5466. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4870 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 eleq2 2822 . . 3 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}}))
3 snex 5430 . . . 4 {𝐴} ∈ V
4 prex 5431 . . . 4 {𝐴, 𝐵} ∈ V
53, 4elpr2 4652 . . 3 (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))
62, 5bitrdi 286 . 2 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
71, 6syl 17 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  {csn 4627  {cpr 4629  cop 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634
This theorem is referenced by:  elop  5466  bj-inftyexpidisj  36079
  Copyright terms: Public domain W3C validator