MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elopg Structured version   Visualization version   GIF version

Theorem elopg 5381
Description: Characterization of the elements of an ordered pair. Closed form of elop 5382. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.)
Assertion
Ref Expression
elopg ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))

Proof of Theorem elopg
StepHypRef Expression
1 dfopg 4802 . 2 ((𝐴𝑉𝐵𝑊) → ⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}})
2 eleq2 2827 . . 3 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}}))
3 snex 5354 . . . 4 {𝐴} ∈ V
4 prex 5355 . . . 4 {𝐴, 𝐵} ∈ V
53, 4elpr2 4586 . . 3 (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))
62, 5bitrdi 287 . 2 (⟨𝐴, 𝐵⟩ = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
71, 6syl 17 1 ((𝐴𝑉𝐵𝑊) → (𝐶 ∈ ⟨𝐴, 𝐵⟩ ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  {csn 4561  {cpr 4563  cop 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568
This theorem is referenced by:  elop  5382  bj-inftyexpidisj  35381
  Copyright terms: Public domain W3C validator