Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elopg | Structured version Visualization version GIF version |
Description: Characterization of the elements of an ordered pair. Closed form of elop 5382. (Contributed by BJ, 22-Jun-2019.) (Avoid depending on this detail.) |
Ref | Expression |
---|---|
elopg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfopg 4802 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}}) | |
2 | eleq2 2827 | . . 3 ⊢ (〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ 𝐶 ∈ {{𝐴}, {𝐴, 𝐵}})) | |
3 | snex 5354 | . . . 4 ⊢ {𝐴} ∈ V | |
4 | prex 5355 | . . . 4 ⊢ {𝐴, 𝐵} ∈ V | |
5 | 3, 4 | elpr2 4586 | . . 3 ⊢ (𝐶 ∈ {{𝐴}, {𝐴, 𝐵}} ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵})) |
6 | 2, 5 | bitrdi 287 | . 2 ⊢ (〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
7 | 1, 6 | syl 17 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 〈𝐴, 𝐵〉 ↔ (𝐶 = {𝐴} ∨ 𝐶 = {𝐴, 𝐵}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 {csn 4561 {cpr 4563 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: elop 5382 bj-inftyexpidisj 35381 |
Copyright terms: Public domain | W3C validator |