Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr2g | Structured version Visualization version GIF version |
Description: A member of a pair of sets is one or the other of them, and conversely. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 14-Oct-2005.) Generalize from sethood hypothesis to sethood antecedent. (Revised by BJ, 25-May-2024.) |
Ref | Expression |
---|---|
elpr2g | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3440 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V)) |
3 | elex 3440 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ V) | |
4 | eleq1a 2834 | . . . 4 ⊢ (𝐵 ∈ V → (𝐴 = 𝐵 → 𝐴 ∈ V)) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 = 𝐵 → 𝐴 ∈ V)) |
6 | elex 3440 | . . . 4 ⊢ (𝐶 ∈ 𝑊 → 𝐶 ∈ V) | |
7 | eleq1a 2834 | . . . 4 ⊢ (𝐶 ∈ V → (𝐴 = 𝐶 → 𝐴 ∈ V)) | |
8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐶 ∈ 𝑊 → (𝐴 = 𝐶 → 𝐴 ∈ V)) |
9 | 5, 8 | jaao 951 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → 𝐴 ∈ V)) |
10 | elprg 4579 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
11 | 10 | a1i 11 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)))) |
12 | 2, 9, 11 | pm5.21ndd 380 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: elpr2 4583 |
Copyright terms: Public domain | W3C validator |