![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 4649 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1541 ∈ wcel 2106 Vcvv 3474 {cpr 4630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-un 3953 df-sn 4629 df-pr 4631 |
This theorem is referenced by: difprsnss 4802 preq12b 4851 pwpr 4902 pwtp 4903 uniprg 4925 uniprOLD 4927 intprg 4985 intprOLD 4987 axprALT 5420 zfpair2 5428 opthwiener 5514 tpres 7204 fnprb 7212 2oconcl 8505 pw2f1olem 9078 djuunxp 9918 sdom2en01 10299 gruun 10803 fzpr 13558 m1expeven 14077 bpoly2 16003 bpoly3 16004 lcmfpr 16566 isprm2 16621 gsumpr 19825 drngnidl 20860 psgninv 21141 psgnodpm 21147 mdetunilem7 22127 indistopon 22511 dfconn2 22930 cnconn 22933 unconn 22940 txindis 23145 txconn 23200 filconn 23394 xpsdsval 23894 rolle 25514 dvivthlem1 25532 ang180lem3 26323 ang180lem4 26324 wilthlem2 26580 sqff1o 26693 ppiub 26714 lgslem1 26807 lgsdir2lem4 26838 lgsdir2lem5 26839 gausslemma2dlem0i 26874 2lgslem3 26914 2lgslem4 26916 nosgnn0 27168 structiedg0val 28320 usgrexmplef 28554 3vfriswmgrlem 29568 prodpr 32070 cycpm2tr 32319 lmat22lem 32866 signslema 33642 circlemethhgt 33724 subfacp1lem1 34239 subfacp1lem4 34243 rankeq1o 35218 onsucconni 35414 topdifinfindis 36319 poimirlem9 36589 divrngidl 36988 isfldidl 37028 dihmeetlem2N 40262 wopprc 41857 pw2f1ocnv 41864 kelac2lem 41894 rnmptpr 43961 cncfiooicclem1 44694 paireqne 46264 31prm 46350 lighneallem4 46363 nn0sumshdiglem2 47392 onsetreclem3 47836 |
Copyright terms: Public domain | W3C validator |