Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 4582 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 {cpr 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-sn 4562 df-pr 4564 |
This theorem is referenced by: difprsnss 4732 preq12b 4781 pwpr 4833 pwtp 4834 uniprg 4856 uniprOLD 4858 intprg 4912 intprOLD 4914 axprALT 5345 zfpair2 5353 opthwiener 5428 tpres 7076 fnprb 7084 2oconcl 8333 pw2f1olem 8863 djuunxp 9679 sdom2en01 10058 gruun 10562 fzpr 13311 m1expeven 13830 bpoly2 15767 bpoly3 15768 lcmfpr 16332 isprm2 16387 gsumpr 19556 drngnidl 20500 psgninv 20787 psgnodpm 20793 mdetunilem7 21767 indistopon 22151 dfconn2 22570 cnconn 22573 unconn 22580 txindis 22785 txconn 22840 filconn 23034 xpsdsval 23534 rolle 25154 dvivthlem1 25172 ang180lem3 25961 ang180lem4 25962 wilthlem2 26218 sqff1o 26331 ppiub 26352 lgslem1 26445 lgsdir2lem4 26476 lgsdir2lem5 26477 gausslemma2dlem0i 26512 2lgslem3 26552 2lgslem4 26554 structiedg0val 27392 usgrexmplef 27626 3vfriswmgrlem 28641 prodpr 31140 cycpm2tr 31386 lmat22lem 31767 signslema 32541 circlemethhgt 32623 subfacp1lem1 33141 subfacp1lem4 33145 nosgnn0 33861 rankeq1o 34473 onsucconni 34626 topdifinfindis 35517 poimirlem9 35786 divrngidl 36186 isfldidl 36226 dihmeetlem2N 39313 wopprc 40852 pw2f1ocnv 40859 kelac2lem 40889 rnmptpr 42713 cncfiooicclem1 43434 paireqne 44963 31prm 45049 lighneallem4 45062 nn0sumshdiglem2 45968 onsetreclem3 46412 |
Copyright terms: Public domain | W3C validator |