Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 4579 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: difprsnss 4729 preq12b 4778 pwpr 4830 pwtp 4831 uniprg 4853 uniprOLD 4855 intprg 4909 intprOLD 4911 axprALT 5340 zfpair2 5348 opthwiener 5422 tpres 7058 fnprb 7066 2oconcl 8295 pw2f1olem 8816 djuunxp 9610 sdom2en01 9989 gruun 10493 fzpr 13240 m1expeven 13758 bpoly2 15695 bpoly3 15696 lcmfpr 16260 isprm2 16315 gsumpr 19471 drngnidl 20413 psgninv 20699 psgnodpm 20705 mdetunilem7 21675 indistopon 22059 dfconn2 22478 cnconn 22481 unconn 22488 txindis 22693 txconn 22748 filconn 22942 xpsdsval 23442 rolle 25059 dvivthlem1 25077 ang180lem3 25866 ang180lem4 25867 wilthlem2 26123 sqff1o 26236 ppiub 26257 lgslem1 26350 lgsdir2lem4 26381 lgsdir2lem5 26382 gausslemma2dlem0i 26417 2lgslem3 26457 2lgslem4 26459 structiedg0val 27295 usgrexmplef 27529 3vfriswmgrlem 28542 prodpr 31042 cycpm2tr 31288 lmat22lem 31669 signslema 32441 circlemethhgt 32523 subfacp1lem1 33041 subfacp1lem4 33045 nosgnn0 33788 rankeq1o 34400 onsucconni 34553 topdifinfindis 35444 poimirlem9 35713 divrngidl 36113 isfldidl 36153 dihmeetlem2N 39240 wopprc 40768 pw2f1ocnv 40775 kelac2lem 40805 rnmptpr 42602 cncfiooicclem1 43324 paireqne 44851 31prm 44937 lighneallem4 44950 nn0sumshdiglem2 45856 onsetreclem3 46298 |
Copyright terms: Public domain | W3C validator |