| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4600 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {cpr 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: difprsnss 4750 preq12b 4801 pwpr 4852 pwtp 4853 uniprg 4874 intprg 4931 axprALT 5361 zfpair2 5372 opthwiener 5457 tpres 7137 fnprb 7144 2oconcl 8421 pw2f1olem 8998 djuunxp 9817 sdom2en01 10196 gruun 10700 fzpr 13482 m1expeven 14016 bpoly2 15964 bpoly3 15965 lcmfpr 16538 isprm2 16593 gsumpr 19834 drngnidl 21150 psgninv 21489 psgnodpm 21495 mdetunilem7 22503 indistopon 22886 dfconn2 23304 cnconn 23307 unconn 23314 txindis 23519 txconn 23574 filconn 23768 xpsdsval 24267 rolle 25892 dvivthlem1 25911 ang180lem3 26719 ang180lem4 26720 wilthlem2 26977 sqff1o 27090 ppiub 27113 lgslem1 27206 lgsdir2lem4 27237 lgsdir2lem5 27238 gausslemma2dlem0i 27273 2lgslem3 27313 2lgslem4 27315 nosgnn0 27568 structiedg0val 28967 usgrexmplef 29204 3vfriswmgrlem 30221 prodpr 32772 cycpm2tr 33062 drngmxidlr 33416 lmat22lem 33790 signslema 34536 circlemethhgt 34617 subfacp1lem1 35162 subfacp1lem4 35166 rankeq1o 36155 onsucconni 36421 topdifinfindis 37330 poimirlem9 37619 divrngidl 38018 isfldidl 38058 dihmeetlem2N 41288 wopprc 43013 pw2f1ocnv 43020 kelac2lem 43047 prclaxpr 44969 permaxpr 44994 rnmptpr 45165 cncfiooicclem1 45884 paireqne 47505 31prm 47591 lighneallem4 47604 upgrimpths 47903 usgrexmpl2nb1 48026 usgrexmpl2nb2 48027 usgrexmpl2nb4 48029 usgrexmpl2nb5 48030 usgrexmpl2trifr 48031 pgnbgreunbgrlem3 48112 pgnbgreunbgrlem6 48118 nn0sumshdiglem2 48617 2arwcatlem1 49590 2arwcatlem5 49594 2arwcat 49595 onsetreclem3 49702 |
| Copyright terms: Public domain | W3C validator |