| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4615 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: difprsnss 4766 preq12b 4817 pwpr 4868 pwtp 4869 uniprg 4890 intprg 4948 axprALT 5380 zfpair2 5391 opthwiener 5477 tpres 7178 fnprb 7185 2oconcl 8470 pw2f1olem 9050 djuunxp 9881 sdom2en01 10262 gruun 10766 fzpr 13547 m1expeven 14081 bpoly2 16030 bpoly3 16031 lcmfpr 16604 isprm2 16659 gsumpr 19892 drngnidl 21160 psgninv 21498 psgnodpm 21504 mdetunilem7 22512 indistopon 22895 dfconn2 23313 cnconn 23316 unconn 23323 txindis 23528 txconn 23583 filconn 23777 xpsdsval 24276 rolle 25901 dvivthlem1 25920 ang180lem3 26728 ang180lem4 26729 wilthlem2 26986 sqff1o 27099 ppiub 27122 lgslem1 27215 lgsdir2lem4 27246 lgsdir2lem5 27247 gausslemma2dlem0i 27282 2lgslem3 27322 2lgslem4 27324 nosgnn0 27577 structiedg0val 28956 usgrexmplef 29193 3vfriswmgrlem 30213 prodpr 32758 cycpm2tr 33083 drngmxidlr 33456 lmat22lem 33814 signslema 34560 circlemethhgt 34641 subfacp1lem1 35173 subfacp1lem4 35177 rankeq1o 36166 onsucconni 36432 topdifinfindis 37341 poimirlem9 37630 divrngidl 38029 isfldidl 38069 dihmeetlem2N 41300 wopprc 43026 pw2f1ocnv 43033 kelac2lem 43060 prclaxpr 44982 permaxpr 45007 rnmptpr 45178 cncfiooicclem1 45898 paireqne 47516 31prm 47602 lighneallem4 47615 upgrimpths 47913 usgrexmpl2nb1 48027 usgrexmpl2nb2 48028 usgrexmpl2nb4 48030 usgrexmpl2nb5 48031 usgrexmpl2trifr 48032 pgnbgreunbgrlem3 48112 pgnbgreunbgrlem6 48118 nn0sumshdiglem2 48615 2arwcatlem1 49588 2arwcatlem5 49592 2arwcat 49593 onsetreclem3 49700 |
| Copyright terms: Public domain | W3C validator |