| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4624 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: difprsnss 4775 preq12b 4826 pwpr 4877 pwtp 4878 uniprg 4899 intprg 4957 axprALT 5392 zfpair2 5403 opthwiener 5489 tpres 7192 fnprb 7199 2oconcl 8513 pw2f1olem 9088 djuunxp 9933 sdom2en01 10314 gruun 10818 fzpr 13594 m1expeven 14125 bpoly2 16071 bpoly3 16072 lcmfpr 16644 isprm2 16699 gsumpr 19934 drngnidl 21202 psgninv 21540 psgnodpm 21546 mdetunilem7 22554 indistopon 22937 dfconn2 23355 cnconn 23358 unconn 23365 txindis 23570 txconn 23625 filconn 23819 xpsdsval 24318 rolle 25944 dvivthlem1 25963 ang180lem3 26771 ang180lem4 26772 wilthlem2 27029 sqff1o 27142 ppiub 27165 lgslem1 27258 lgsdir2lem4 27289 lgsdir2lem5 27290 gausslemma2dlem0i 27325 2lgslem3 27365 2lgslem4 27367 nosgnn0 27620 structiedg0val 28947 usgrexmplef 29184 3vfriswmgrlem 30204 prodpr 32751 cycpm2tr 33076 drngmxidlr 33439 lmat22lem 33794 signslema 34540 circlemethhgt 34621 subfacp1lem1 35147 subfacp1lem4 35151 rankeq1o 36135 onsucconni 36401 topdifinfindis 37310 poimirlem9 37599 divrngidl 37998 isfldidl 38038 dihmeetlem2N 41264 wopprc 43001 pw2f1ocnv 43008 kelac2lem 43035 prclaxpr 44958 permaxpr 44983 rnmptpr 45149 cncfiooicclem1 45870 paireqne 47473 31prm 47559 lighneallem4 47572 upgrimpths 47870 usgrexmpl2nb1 47984 usgrexmpl2nb2 47985 usgrexmpl2nb4 47987 usgrexmpl2nb5 47988 usgrexmpl2trifr 47989 nn0sumshdiglem2 48550 2arwcatlem1 49387 2arwcatlem5 49391 2arwcat 49392 onsetreclem3 49466 |
| Copyright terms: Public domain | W3C validator |