| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4624 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {cpr 4603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: difprsnss 4775 preq12b 4826 pwpr 4877 pwtp 4878 uniprg 4899 intprg 4957 axprALT 5392 zfpair2 5403 opthwiener 5489 tpres 7193 fnprb 7200 2oconcl 8515 pw2f1olem 9090 djuunxp 9935 sdom2en01 10316 gruun 10820 fzpr 13596 m1expeven 14127 bpoly2 16073 bpoly3 16074 lcmfpr 16646 isprm2 16701 gsumpr 19936 drngnidl 21204 psgninv 21542 psgnodpm 21548 mdetunilem7 22556 indistopon 22939 dfconn2 23357 cnconn 23360 unconn 23367 txindis 23572 txconn 23627 filconn 23821 xpsdsval 24320 rolle 25946 dvivthlem1 25965 ang180lem3 26773 ang180lem4 26774 wilthlem2 27031 sqff1o 27144 ppiub 27167 lgslem1 27260 lgsdir2lem4 27291 lgsdir2lem5 27292 gausslemma2dlem0i 27327 2lgslem3 27367 2lgslem4 27369 nosgnn0 27622 structiedg0val 29001 usgrexmplef 29238 3vfriswmgrlem 30258 prodpr 32805 cycpm2tr 33130 drngmxidlr 33493 lmat22lem 33848 signslema 34594 circlemethhgt 34675 subfacp1lem1 35201 subfacp1lem4 35205 rankeq1o 36189 onsucconni 36455 topdifinfindis 37364 poimirlem9 37653 divrngidl 38052 isfldidl 38092 dihmeetlem2N 41318 wopprc 43054 pw2f1ocnv 43061 kelac2lem 43088 prclaxpr 45010 permaxpr 45035 rnmptpr 45201 cncfiooicclem1 45922 paireqne 47525 31prm 47611 lighneallem4 47624 upgrimpths 47922 usgrexmpl2nb1 48036 usgrexmpl2nb2 48037 usgrexmpl2nb4 48039 usgrexmpl2nb5 48040 usgrexmpl2trifr 48041 nn0sumshdiglem2 48602 2arwcatlem1 49472 2arwcatlem5 49476 2arwcat 49477 onsetreclem3 49571 |
| Copyright terms: Public domain | W3C validator |