Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 4543 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∨ wo 844 = wceq 1538 ∈ wcel 2111 Vcvv 3409 {cpr 4524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-un 3863 df-sn 4523 df-pr 4525 |
This theorem is referenced by: difprsnss 4689 preq12b 4738 pwpr 4792 pwtp 4793 uniprg 4815 uniprOLD 4817 intprg 4871 intprOLD 4873 axprALT 5291 zfpair2 5299 opthwiener 5373 tpres 6954 fnprb 6962 2oconcl 8138 pw2f1olem 8642 djuunxp 9383 sdom2en01 9762 gruun 10266 fzpr 13011 m1expeven 13526 bpoly2 15459 bpoly3 15460 lcmfpr 16023 isprm2 16078 gsumpr 19143 drngnidl 20070 psgninv 20347 psgnodpm 20353 mdetunilem7 21318 indistopon 21701 dfconn2 22119 cnconn 22122 unconn 22129 txindis 22334 txconn 22389 filconn 22583 xpsdsval 23083 rolle 24689 dvivthlem1 24707 ang180lem3 25496 ang180lem4 25497 wilthlem2 25753 sqff1o 25866 ppiub 25887 lgslem1 25980 lgsdir2lem4 26011 lgsdir2lem5 26012 gausslemma2dlem0i 26047 2lgslem3 26087 2lgslem4 26089 structiedg0val 26914 usgrexmplef 27148 3vfriswmgrlem 28161 prodpr 30664 cycpm2tr 30912 lmat22lem 31288 signslema 32060 circlemethhgt 32142 subfacp1lem1 32657 subfacp1lem4 32661 nosgnn0 33426 rankeq1o 34022 onsucconni 34175 topdifinfindis 35043 poimirlem9 35346 divrngidl 35746 isfldidl 35786 dihmeetlem2N 38875 wopprc 40344 pw2f1ocnv 40351 kelac2lem 40381 rnmptpr 42172 cncfiooicclem1 42901 paireqne 44396 31prm 44482 lighneallem4 44495 nn0sumshdiglem2 45401 onsetreclem3 45627 |
Copyright terms: Public domain | W3C validator |