| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4612 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: difprsnss 4763 preq12b 4814 pwpr 4865 pwtp 4866 uniprg 4887 intprg 4945 axprALT 5377 zfpair2 5388 opthwiener 5474 tpres 7175 fnprb 7182 2oconcl 8467 pw2f1olem 9045 djuunxp 9874 sdom2en01 10255 gruun 10759 fzpr 13540 m1expeven 14074 bpoly2 16023 bpoly3 16024 lcmfpr 16597 isprm2 16652 gsumpr 19885 drngnidl 21153 psgninv 21491 psgnodpm 21497 mdetunilem7 22505 indistopon 22888 dfconn2 23306 cnconn 23309 unconn 23316 txindis 23521 txconn 23576 filconn 23770 xpsdsval 24269 rolle 25894 dvivthlem1 25913 ang180lem3 26721 ang180lem4 26722 wilthlem2 26979 sqff1o 27092 ppiub 27115 lgslem1 27208 lgsdir2lem4 27239 lgsdir2lem5 27240 gausslemma2dlem0i 27275 2lgslem3 27315 2lgslem4 27317 nosgnn0 27570 structiedg0val 28949 usgrexmplef 29186 3vfriswmgrlem 30206 prodpr 32751 cycpm2tr 33076 drngmxidlr 33449 lmat22lem 33807 signslema 34553 circlemethhgt 34634 subfacp1lem1 35166 subfacp1lem4 35170 rankeq1o 36159 onsucconni 36425 topdifinfindis 37334 poimirlem9 37623 divrngidl 38022 isfldidl 38062 dihmeetlem2N 41293 wopprc 43019 pw2f1ocnv 43026 kelac2lem 43053 prclaxpr 44975 permaxpr 45000 rnmptpr 45171 cncfiooicclem1 45891 paireqne 47512 31prm 47598 lighneallem4 47611 upgrimpths 47909 usgrexmpl2nb1 48023 usgrexmpl2nb2 48024 usgrexmpl2nb4 48026 usgrexmpl2nb5 48027 usgrexmpl2trifr 48028 pgnbgreunbgrlem3 48108 pgnbgreunbgrlem6 48114 nn0sumshdiglem2 48611 2arwcatlem1 49584 2arwcatlem5 49588 2arwcat 49589 onsetreclem3 49696 |
| Copyright terms: Public domain | W3C validator |