| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4608 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {cpr 4587 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: difprsnss 4759 preq12b 4810 pwpr 4861 pwtp 4862 uniprg 4883 intprg 4941 axprALT 5372 zfpair2 5383 opthwiener 5469 tpres 7157 fnprb 7164 2oconcl 8444 pw2f1olem 9022 djuunxp 9850 sdom2en01 10231 gruun 10735 fzpr 13516 m1expeven 14050 bpoly2 15999 bpoly3 16000 lcmfpr 16573 isprm2 16628 gsumpr 19869 drngnidl 21185 psgninv 21524 psgnodpm 21530 mdetunilem7 22538 indistopon 22921 dfconn2 23339 cnconn 23342 unconn 23349 txindis 23554 txconn 23609 filconn 23803 xpsdsval 24302 rolle 25927 dvivthlem1 25946 ang180lem3 26754 ang180lem4 26755 wilthlem2 27012 sqff1o 27125 ppiub 27148 lgslem1 27241 lgsdir2lem4 27272 lgsdir2lem5 27273 gausslemma2dlem0i 27308 2lgslem3 27348 2lgslem4 27350 nosgnn0 27603 structiedg0val 29002 usgrexmplef 29239 3vfriswmgrlem 30256 prodpr 32801 cycpm2tr 33091 drngmxidlr 33442 lmat22lem 33800 signslema 34546 circlemethhgt 34627 subfacp1lem1 35159 subfacp1lem4 35163 rankeq1o 36152 onsucconni 36418 topdifinfindis 37327 poimirlem9 37616 divrngidl 38015 isfldidl 38055 dihmeetlem2N 41286 wopprc 43012 pw2f1ocnv 43019 kelac2lem 43046 prclaxpr 44968 permaxpr 44993 rnmptpr 45164 cncfiooicclem1 45884 paireqne 47505 31prm 47591 lighneallem4 47604 upgrimpths 47902 usgrexmpl2nb1 48016 usgrexmpl2nb2 48017 usgrexmpl2nb4 48019 usgrexmpl2nb5 48020 usgrexmpl2trifr 48021 pgnbgreunbgrlem3 48101 pgnbgreunbgrlem6 48107 nn0sumshdiglem2 48604 2arwcatlem1 49577 2arwcatlem5 49581 2arwcat 49582 onsetreclem3 49689 |
| Copyright terms: Public domain | W3C validator |