![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version |
Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
Ref | Expression |
---|---|
elpr.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elprg 4670 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: difprsnss 4824 preq12b 4875 pwpr 4925 pwtp 4926 uniprg 4947 intprg 5005 axprALT 5440 zfpair2 5448 opthwiener 5533 tpres 7238 fnprb 7245 2oconcl 8559 pw2f1olem 9142 djuunxp 9990 sdom2en01 10371 gruun 10875 fzpr 13639 m1expeven 14160 bpoly2 16105 bpoly3 16106 lcmfpr 16674 isprm2 16729 gsumpr 19997 drngnidl 21276 psgninv 21623 psgnodpm 21629 mdetunilem7 22645 indistopon 23029 dfconn2 23448 cnconn 23451 unconn 23458 txindis 23663 txconn 23718 filconn 23912 xpsdsval 24412 rolle 26048 dvivthlem1 26067 ang180lem3 26872 ang180lem4 26873 wilthlem2 27130 sqff1o 27243 ppiub 27266 lgslem1 27359 lgsdir2lem4 27390 lgsdir2lem5 27391 gausslemma2dlem0i 27426 2lgslem3 27466 2lgslem4 27468 nosgnn0 27721 structiedg0val 29057 usgrexmplef 29294 3vfriswmgrlem 30309 prodpr 32830 cycpm2tr 33112 drngmxidlr 33471 lmat22lem 33763 signslema 34539 circlemethhgt 34620 subfacp1lem1 35147 subfacp1lem4 35151 rankeq1o 36135 onsucconni 36403 topdifinfindis 37312 poimirlem9 37589 divrngidl 37988 isfldidl 38028 dihmeetlem2N 41256 wopprc 42987 pw2f1ocnv 42994 kelac2lem 43021 rnmptpr 45084 cncfiooicclem1 45814 paireqne 47385 31prm 47471 lighneallem4 47484 usgrexmpl2nb1 47847 usgrexmpl2nb2 47848 usgrexmpl2nb4 47850 usgrexmpl2nb5 47851 usgrexmpl2trifr 47852 nn0sumshdiglem2 48356 onsetreclem3 48799 |
Copyright terms: Public domain | W3C validator |