| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpr | Structured version Visualization version GIF version | ||
| Description: A member of a pair of classes is one or the other of them, and conversely as soon as it is a set. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.) |
| Ref | Expression |
|---|---|
| elpr.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elpr | ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpr.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elprg 4596 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: difprsnss 4748 preq12b 4799 pwpr 4850 pwtp 4851 uniprg 4872 intprg 4929 axprALT 5358 zfpair2 5369 opthwiener 5452 tpres 7135 fnprb 7142 2oconcl 8418 pw2f1olem 8994 djuunxp 9814 sdom2en01 10193 gruun 10697 fzpr 13479 m1expeven 14016 bpoly2 15964 bpoly3 15965 lcmfpr 16538 isprm2 16593 gsumpr 19867 drngnidl 21180 psgninv 21519 psgnodpm 21525 mdetunilem7 22533 indistopon 22916 dfconn2 23334 cnconn 23337 unconn 23344 txindis 23549 txconn 23604 filconn 23798 xpsdsval 24296 rolle 25921 dvivthlem1 25940 ang180lem3 26748 ang180lem4 26749 wilthlem2 27006 sqff1o 27119 ppiub 27142 lgslem1 27235 lgsdir2lem4 27266 lgsdir2lem5 27267 gausslemma2dlem0i 27302 2lgslem3 27342 2lgslem4 27344 nosgnn0 27597 structiedg0val 29000 usgrexmplef 29237 3vfriswmgrlem 30257 prodpr 32809 cycpm2tr 33088 drngmxidlr 33443 lmat22lem 33830 signslema 34575 circlemethhgt 34656 subfacp1lem1 35223 subfacp1lem4 35227 rankeq1o 36215 onsucconni 36481 topdifinfindis 37390 poimirlem9 37679 divrngidl 38078 isfldidl 38118 dihmeetlem2N 41408 wopprc 43133 pw2f1ocnv 43140 kelac2lem 43167 prclaxpr 45088 permaxpr 45113 rnmptpr 45284 cncfiooicclem1 46001 paireqne 47621 31prm 47707 lighneallem4 47720 upgrimpths 48019 usgrexmpl2nb1 48142 usgrexmpl2nb2 48143 usgrexmpl2nb4 48145 usgrexmpl2nb5 48146 usgrexmpl2trifr 48147 pgnbgreunbgrlem3 48228 pgnbgreunbgrlem6 48234 nn0sumshdiglem2 48733 2arwcatlem1 49706 2arwcatlem5 49710 2arwcat 49711 onsetreclem3 49818 |
| Copyright terms: Public domain | W3C validator |