MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreqprb Structured version   Visualization version   GIF version

Theorem elpreqprb 4870
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.)
Assertion
Ref Expression
elpreqprb (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑉

Proof of Theorem elpreqprb
StepHypRef Expression
1 elpreqpr 4869 . 2 (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
2 prid1g 4766 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴, 𝑥})
3 eleq2 2814 . . . 4 ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥}))
42, 3syl5ibrcom 246 . . 3 (𝐴𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶}))
54exlimdv 1928 . 2 (𝐴𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶}))
61, 5impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wex 1773  wcel 2098  {cpr 4632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-un 3949  df-nul 4323  df-sn 4631  df-pr 4633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator