![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreqprb | Structured version Visualization version GIF version |
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
Ref | Expression |
---|---|
elpreqprb | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr 4866 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | |
2 | prid1g 4763 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝑥}) | |
3 | eleq2 2820 | . . . 4 ⊢ ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥})) | |
4 | 2, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
5 | 4 | exlimdv 1934 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
6 | 1, 5 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∃wex 1779 ∈ wcel 2104 {cpr 4629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-v 3474 df-dif 3950 df-un 3952 df-nul 4322 df-sn 4628 df-pr 4630 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |