Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpreqprb | Structured version Visualization version GIF version |
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
Ref | Expression |
---|---|
elpreqprb | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr 4757 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | |
2 | prid1g 4656 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝑥}) | |
3 | eleq2 2840 | . . . 4 ⊢ ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥})) | |
4 | 2, 3 | syl5ibrcom 250 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
5 | 4 | exlimdv 1934 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
6 | 1, 5 | impbid2 229 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 {cpr 4527 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-dif 3863 df-un 3865 df-nul 4228 df-sn 4526 df-pr 4528 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |