![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpreqprb | Structured version Visualization version GIF version |
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.) |
Ref | Expression |
---|---|
elpreqprb | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpreqpr 4869 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | |
2 | prid1g 4766 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝑥}) | |
3 | eleq2 2814 | . . . 4 ⊢ ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥})) | |
4 | 2, 3 | syl5ibrcom 246 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
5 | 4 | exlimdv 1928 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶})) |
6 | 1, 5 | impbid2 225 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 {cpr 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3463 df-dif 3947 df-un 3949 df-nul 4323 df-sn 4631 df-pr 4633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |