| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4598 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2113 {cpr 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 |
| This theorem is referenced by: prid2g 4713 prid1 4714 prnzg 4730 preq1b 4797 prel12g 4815 elpreqprb 4819 prproe 4856 opth1 5418 fr2nr 5596 fpr2g 7151 f1prex 7224 fveqf1o 7242 fvf1pr 7247 pw2f1olem 9001 hashprdifel 14307 gcdcllem3 16414 mgm2nsgrplem1 18828 mgm2nsgrplem2 18829 mgm2nsgrplem3 18830 sgrp2nmndlem1 18833 sgrp2rid2 18836 pmtrprfv 19367 pptbas 22924 coseq0negpitopi 26440 uhgr2edg 29188 umgrvad2edg 29193 uspgr2v1e2w 29231 usgr2v1e2w 29232 nbusgredgeu0 29348 nbusgrf1o0 29349 nb3grprlem1 29360 nb3grprlem2 29361 vtxduhgr0nedg 29473 1hegrvtxdg1 29488 1egrvtxdg1 29490 umgr2v2evd2 29508 vdegp1bi 29518 mptprop 32683 altgnsg 33125 cyc3genpmlem 33127 elrspunsn 33401 bj-prmoore 37180 ftc1anclem8 37760 kelac2 43182 pr2el1 43666 pr2eldif1 43671 fourierdlem54 46282 sge0pr 46516 imarnf1pr 47406 paireqne 47635 fmtnoprmfac2lem1 47690 grlimprclnbgr 48120 grlimprclnbgredg 48121 1hegrlfgr 48256 fucoppcffth 49536 termc2 49643 uobeqterm 49671 2arwcatlem4 49723 incat 49726 |
| Copyright terms: Public domain | W3C validator |