| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4602 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 |
| This theorem is referenced by: prid2g 4715 prid1 4716 prnzg 4732 preq1b 4800 prel12g 4818 elpreqprb 4822 prproe 4859 opth1 5422 fr2nr 5600 fpr2g 7151 f1prex 7225 fveqf1o 7243 fvf1pr 7248 pw2f1olem 9005 hashprdifel 14323 gcdcllem3 16430 mgm2nsgrplem1 18810 mgm2nsgrplem2 18811 mgm2nsgrplem3 18812 sgrp2nmndlem1 18815 sgrp2rid2 18818 pmtrprfv 19350 pptbas 22911 coseq0negpitopi 26428 uhgr2edg 29171 umgrvad2edg 29176 uspgr2v1e2w 29214 usgr2v1e2w 29215 nbusgredgeu0 29331 nbusgrf1o0 29332 nb3grprlem1 29343 nb3grprlem2 29344 vtxduhgr0nedg 29456 1hegrvtxdg1 29471 1egrvtxdg1 29473 umgr2v2evd2 29491 vdegp1bi 29501 mptprop 32654 altgnsg 33104 cyc3genpmlem 33106 elrspunsn 33376 bj-prmoore 37088 ftc1anclem8 37679 kelac2 43038 pr2el1 43522 pr2eldif1 43527 fourierdlem54 46142 sge0pr 46376 imarnf1pr 47267 paireqne 47496 fmtnoprmfac2lem1 47551 grlimprclnbgr 47981 grlimprclnbgredg 47982 1hegrlfgr 48117 fucoppcffth 49397 termc2 49504 uobeqterm 49532 2arwcatlem4 49584 incat 49587 |
| Copyright terms: Public domain | W3C validator |