![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 864 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4670 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 {cpr 4650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: prid2g 4786 prid1 4787 prnzg 4803 preq1b 4871 prel12g 4888 elpreqprb 4892 prproe 4929 opth1 5495 fr2nr 5677 fpr2g 7248 f1prex 7320 fveqf1o 7338 fvf1pr 7343 pw2f1olem 9142 hashprdifel 14447 gcdcllem3 16547 mgm2nsgrplem1 18953 mgm2nsgrplem2 18954 mgm2nsgrplem3 18955 sgrp2nmndlem1 18958 sgrp2rid2 18961 pmtrprfv 19495 pptbas 23036 coseq0negpitopi 26563 uhgr2edg 29243 umgrvad2edg 29248 uspgr2v1e2w 29286 usgr2v1e2w 29287 nbusgredgeu0 29403 nbusgrf1o0 29404 nb3grprlem1 29415 nb3grprlem2 29416 vtxduhgr0nedg 29528 1hegrvtxdg1 29543 1egrvtxdg1 29545 umgr2v2evd2 29563 vdegp1bi 29573 mptprop 32710 altgnsg 33142 cyc3genpmlem 33144 elrspunsn 33422 bj-prmoore 37081 ftc1anclem8 37660 kelac2 43022 pr2el1 43511 pr2eldif1 43516 fourierdlem54 46081 sge0pr 46315 imarnf1pr 47197 paireqne 47385 fmtnoprmfac2lem1 47440 1hegrlfgr 47855 |
Copyright terms: Public domain | W3C validator |