![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4653 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 847 = wceq 1537 ∈ wcel 2106 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 |
This theorem is referenced by: prid2g 4766 prid1 4767 prnzg 4783 preq1b 4851 prel12g 4869 elpreqprb 4873 prproe 4910 opth1 5486 fr2nr 5666 fpr2g 7231 f1prex 7304 fveqf1o 7322 fvf1pr 7327 pw2f1olem 9115 hashprdifel 14434 gcdcllem3 16535 mgm2nsgrplem1 18944 mgm2nsgrplem2 18945 mgm2nsgrplem3 18946 sgrp2nmndlem1 18949 sgrp2rid2 18952 pmtrprfv 19486 pptbas 23031 coseq0negpitopi 26560 uhgr2edg 29240 umgrvad2edg 29245 uspgr2v1e2w 29283 usgr2v1e2w 29284 nbusgredgeu0 29400 nbusgrf1o0 29401 nb3grprlem1 29412 nb3grprlem2 29413 vtxduhgr0nedg 29525 1hegrvtxdg1 29540 1egrvtxdg1 29542 umgr2v2evd2 29560 vdegp1bi 29570 mptprop 32713 altgnsg 33152 cyc3genpmlem 33154 elrspunsn 33437 bj-prmoore 37098 ftc1anclem8 37687 kelac2 43054 pr2el1 43539 pr2eldif1 43544 fourierdlem54 46116 sge0pr 46350 imarnf1pr 47232 paireqne 47436 fmtnoprmfac2lem1 47491 1hegrlfgr 47976 |
Copyright terms: Public domain | W3C validator |