Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 861 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4579 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 257 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: prid2g 4694 prid1 4695 prnzg 4711 preq1b 4774 prel12g 4791 elpreqprb 4795 prproe 4834 opth1 5384 fr2nr 5558 fpr2g 7069 f1prex 7136 fveqf1o 7155 pw2f1olem 8816 hashprdifel 14041 gcdcllem3 16136 mgm2nsgrplem1 18472 mgm2nsgrplem2 18473 mgm2nsgrplem3 18474 sgrp2nmndlem1 18477 sgrp2rid2 18480 pmtrprfv 18976 pptbas 22066 coseq0negpitopi 25565 uhgr2edg 27478 umgrvad2edg 27483 uspgr2v1e2w 27521 usgr2v1e2w 27522 nbusgredgeu0 27638 nbusgrf1o0 27639 nb3grprlem1 27650 nb3grprlem2 27651 vtxduhgr0nedg 27762 1hegrvtxdg1 27777 1egrvtxdg1 27779 umgr2v2evd2 27797 vdegp1bi 27807 mptprop 30933 altgnsg 31318 cyc3genpmlem 31320 bj-prmoore 35213 ftc1anclem8 35784 kelac2 40806 pr2el1 41045 pr2eldif1 41050 fourierdlem54 43591 sge0pr 43822 imarnf1pr 44661 paireqne 44851 fmtnoprmfac2lem1 44906 1hegrlfgr 45182 |
Copyright terms: Public domain | W3C validator |