| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4612 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: prid2g 4725 prid1 4726 prnzg 4742 preq1b 4810 prel12g 4828 elpreqprb 4832 prproe 4869 opth1 5435 fr2nr 5615 fpr2g 7185 f1prex 7259 fveqf1o 7277 fvf1pr 7282 pw2f1olem 9045 hashprdifel 14363 gcdcllem3 16471 mgm2nsgrplem1 18845 mgm2nsgrplem2 18846 mgm2nsgrplem3 18847 sgrp2nmndlem1 18850 sgrp2rid2 18853 pmtrprfv 19383 pptbas 22895 coseq0negpitopi 26412 uhgr2edg 29135 umgrvad2edg 29140 uspgr2v1e2w 29178 usgr2v1e2w 29179 nbusgredgeu0 29295 nbusgrf1o0 29296 nb3grprlem1 29307 nb3grprlem2 29308 vtxduhgr0nedg 29420 1hegrvtxdg1 29435 1egrvtxdg1 29437 umgr2v2evd2 29455 vdegp1bi 29465 mptprop 32621 altgnsg 33106 cyc3genpmlem 33108 elrspunsn 33400 bj-prmoore 37103 ftc1anclem8 37694 kelac2 43054 pr2el1 43538 pr2eldif1 43543 fourierdlem54 46158 sge0pr 46392 imarnf1pr 47283 paireqne 47512 fmtnoprmfac2lem1 47567 1hegrlfgr 48120 fucoppcffth 49400 termc2 49507 uobeqterm 49535 2arwcatlem4 49587 incat 49590 |
| Copyright terms: Public domain | W3C validator |