| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4599 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 {cpr 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 |
| This theorem is referenced by: prid2g 4714 prid1 4715 prnzg 4731 preq1b 4798 prel12g 4816 elpreqprb 4820 prproe 4857 opth1 5415 fr2nr 5593 fpr2g 7145 f1prex 7218 fveqf1o 7236 fvf1pr 7241 pw2f1olem 8994 hashprdifel 14302 gcdcllem3 16409 mgm2nsgrplem1 18823 mgm2nsgrplem2 18824 mgm2nsgrplem3 18825 sgrp2nmndlem1 18828 sgrp2rid2 18831 pmtrprfv 19363 pptbas 22921 coseq0negpitopi 26437 uhgr2edg 29184 umgrvad2edg 29189 uspgr2v1e2w 29227 usgr2v1e2w 29228 nbusgredgeu0 29344 nbusgrf1o0 29345 nb3grprlem1 29356 nb3grprlem2 29357 vtxduhgr0nedg 29469 1hegrvtxdg1 29484 1egrvtxdg1 29486 umgr2v2evd2 29504 vdegp1bi 29514 mptprop 32674 altgnsg 33113 cyc3genpmlem 33115 elrspunsn 33389 bj-prmoore 37148 ftc1anclem8 37739 kelac2 43097 pr2el1 43581 pr2eldif1 43586 fourierdlem54 46197 sge0pr 46431 imarnf1pr 47312 paireqne 47541 fmtnoprmfac2lem1 47596 grlimprclnbgr 48026 grlimprclnbgredg 48027 1hegrlfgr 48162 fucoppcffth 49442 termc2 49549 uobeqterm 49577 2arwcatlem4 49629 incat 49632 |
| Copyright terms: Public domain | W3C validator |