![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version |
Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
Ref | Expression |
---|---|
prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2799 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | orci 892 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
3 | elprg 4389 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
4 | 2, 3 | mpbiri 250 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 874 = wceq 1653 ∈ wcel 2157 {cpr 4370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 df-un 3774 df-sn 4369 df-pr 4371 |
This theorem is referenced by: prid2g 4485 prid1 4486 prnzg 4499 preq1b 4563 prel12g 4584 elpreqprb 4588 prproe 4626 opth1 5134 fr2nr 5290 fpr2g 6704 f1prex 6767 fveqf1o 6785 pw2f1olem 8306 hashprdifel 13435 gcdcllem3 15558 mgm2nsgrplem1 17721 mgm2nsgrplem2 17722 mgm2nsgrplem3 17723 sgrp2nmndlem1 17726 sgrp2rid2 17729 pmtrprfv 18185 pptbas 21141 coseq0negpitopi 24597 uhgr2edg 26441 umgrvad2edg 26446 uspgr2v1e2w 26485 usgr2v1e2w 26486 nbusgredgeu0 26612 nbusgrf1o0 26613 nb3grprlem1 26624 nb3grprlem2 26625 vtxduhgr0nedg 26742 1hegrvtxdg1 26757 1egrvtxdg1 26759 umgr2v2evd2 26777 vdegp1bi 26787 ftc1anclem8 33980 kelac2 38420 fourierdlem54 41120 sge0pr 41354 imarnf1pr 42137 fmtnoprmfac2lem1 42260 1hegrlfgr 42512 |
Copyright terms: Public domain | W3C validator |