| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4630 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1539 ∈ wcel 2107 {cpr 4610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-sn 4609 df-pr 4611 |
| This theorem is referenced by: prid2g 4743 prid1 4744 prnzg 4760 preq1b 4828 prel12g 4846 elpreqprb 4850 prproe 4887 opth1 5462 fr2nr 5644 fpr2g 7214 f1prex 7287 fveqf1o 7305 fvf1pr 7310 pw2f1olem 9099 hashprdifel 14420 gcdcllem3 16521 mgm2nsgrplem1 18905 mgm2nsgrplem2 18906 mgm2nsgrplem3 18907 sgrp2nmndlem1 18910 sgrp2rid2 18913 pmtrprfv 19444 pptbas 22981 coseq0negpitopi 26500 uhgr2edg 29172 umgrvad2edg 29177 uspgr2v1e2w 29215 usgr2v1e2w 29216 nbusgredgeu0 29332 nbusgrf1o0 29333 nb3grprlem1 29344 nb3grprlem2 29345 vtxduhgr0nedg 29457 1hegrvtxdg1 29472 1egrvtxdg1 29474 umgr2v2evd2 29492 vdegp1bi 29502 mptprop 32654 altgnsg 33115 cyc3genpmlem 33117 elrspunsn 33398 bj-prmoore 37057 ftc1anclem8 37648 kelac2 43022 pr2el1 43507 pr2eldif1 43512 fourierdlem54 46120 sge0pr 46354 imarnf1pr 47240 paireqne 47444 fmtnoprmfac2lem1 47499 1hegrlfgr 47994 termc2 49117 |
| Copyright terms: Public domain | W3C validator |