| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prid1g | Structured version Visualization version GIF version | ||
| Description: An unordered pair contains its first member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by Stefan Allan, 8-Nov-2008.) |
| Ref | Expression |
|---|---|
| prid1g | ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . . 3 ⊢ 𝐴 = 𝐴 | |
| 2 | 1 | orci 865 | . 2 ⊢ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵) |
| 3 | elprg 4629 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐴, 𝐵} ↔ (𝐴 = 𝐴 ∨ 𝐴 = 𝐵))) | |
| 4 | 2, 3 | mpbiri 258 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴, 𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: prid2g 4742 prid1 4743 prnzg 4759 preq1b 4827 prel12g 4845 elpreqprb 4849 prproe 4886 opth1 5455 fr2nr 5636 fpr2g 7208 f1prex 7282 fveqf1o 7300 fvf1pr 7305 pw2f1olem 9095 hashprdifel 14421 gcdcllem3 16525 mgm2nsgrplem1 18901 mgm2nsgrplem2 18902 mgm2nsgrplem3 18903 sgrp2nmndlem1 18906 sgrp2rid2 18909 pmtrprfv 19439 pptbas 22951 coseq0negpitopi 26469 uhgr2edg 29192 umgrvad2edg 29197 uspgr2v1e2w 29235 usgr2v1e2w 29236 nbusgredgeu0 29352 nbusgrf1o0 29353 nb3grprlem1 29364 nb3grprlem2 29365 vtxduhgr0nedg 29477 1hegrvtxdg1 29492 1egrvtxdg1 29494 umgr2v2evd2 29512 vdegp1bi 29522 mptprop 32680 altgnsg 33165 cyc3genpmlem 33167 elrspunsn 33449 bj-prmoore 37138 ftc1anclem8 37729 kelac2 43064 pr2el1 43548 pr2eldif1 43553 fourierdlem54 46169 sge0pr 46403 imarnf1pr 47291 paireqne 47505 fmtnoprmfac2lem1 47560 1hegrlfgr 48087 termc2 49383 2arwcatlem4 49455 incat 49458 |
| Copyright terms: Public domain | W3C validator |