Proof of Theorem elpr2elpr
Step | Hyp | Ref
| Expression |
1 | | simprr 771 |
. . . . . 6
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
2 | | preq2 4674 |
. . . . . . . 8
⊢ (𝑏 = 𝑌 → {𝐴, 𝑏} = {𝐴, 𝑌}) |
3 | 2 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌})) |
4 | 3 | adantl 483 |
. . . . . 6
⊢ (((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑌) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌})) |
5 | | preq1 4673 |
. . . . . . . 8
⊢ (𝑋 = 𝐴 → {𝑋, 𝑌} = {𝐴, 𝑌}) |
6 | 5 | eqcoms 2744 |
. . . . . . 7
⊢ (𝐴 = 𝑋 → {𝑋, 𝑌} = {𝐴, 𝑌}) |
7 | 6 | adantr 482 |
. . . . . 6
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑌}) |
8 | 1, 4, 7 | rspcedvd 3568 |
. . . . 5
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |
9 | 8 | ex 414 |
. . . 4
⊢ (𝐴 = 𝑋 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
10 | | simprl 769 |
. . . . . 6
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
11 | | preq2 4674 |
. . . . . . . 8
⊢ (𝑏 = 𝑋 → {𝐴, 𝑏} = {𝐴, 𝑋}) |
12 | 11 | eqeq2d 2747 |
. . . . . . 7
⊢ (𝑏 = 𝑋 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋})) |
13 | 12 | adantl 483 |
. . . . . 6
⊢ (((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑋) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋})) |
14 | | preq2 4674 |
. . . . . . . . 9
⊢ (𝑌 = 𝐴 → {𝑋, 𝑌} = {𝑋, 𝐴}) |
15 | 14 | eqcoms 2744 |
. . . . . . . 8
⊢ (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝑋, 𝐴}) |
16 | | prcom 4672 |
. . . . . . . 8
⊢ {𝑋, 𝐴} = {𝐴, 𝑋} |
17 | 15, 16 | eqtrdi 2792 |
. . . . . . 7
⊢ (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝐴, 𝑋}) |
18 | 17 | adantr 482 |
. . . . . 6
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑋}) |
19 | 10, 13, 18 | rspcedvd 3568 |
. . . . 5
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |
20 | 19 | ex 414 |
. . . 4
⊢ (𝐴 = 𝑌 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
21 | 9, 20 | jaoi 855 |
. . 3
⊢ ((𝐴 = 𝑋 ∨ 𝐴 = 𝑌) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
22 | | elpri 4587 |
. . 3
⊢ (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋 ∨ 𝐴 = 𝑌)) |
23 | 21, 22 | syl11 33 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
24 | 23 | 3impia 1117 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |