Proof of Theorem elpr2elpr
Step | Hyp | Ref
| Expression |
1 | | simprr 772 |
. . . . . 6
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) |
2 | | preq12 4760 |
. . . . . . . 8
⊢ ((𝐴 = 𝑋 ∧ 𝑏 = 𝑌) → {𝐴, 𝑏} = {𝑋, 𝑌}) |
3 | 2 | eqcomd 2746 |
. . . . . . 7
⊢ ((𝐴 = 𝑋 ∧ 𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏}) |
4 | 3 | adantlr 714 |
. . . . . 6
⊢ (((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏}) |
5 | 1, 4 | rspcedeq2vd 3643 |
. . . . 5
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |
6 | 5 | ex 412 |
. . . 4
⊢ (𝐴 = 𝑋 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
7 | | simprl 770 |
. . . . . 6
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) |
8 | | preq12 4760 |
. . . . . . . 8
⊢ ((𝐴 = 𝑌 ∧ 𝑏 = 𝑋) → {𝐴, 𝑏} = {𝑌, 𝑋}) |
9 | | prcom 4757 |
. . . . . . . 8
⊢ {𝑌, 𝑋} = {𝑋, 𝑌} |
10 | 8, 9 | eqtr2di 2797 |
. . . . . . 7
⊢ ((𝐴 = 𝑌 ∧ 𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏}) |
11 | 10 | adantlr 714 |
. . . . . 6
⊢ (((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏}) |
12 | 7, 11 | rspcedeq2vd 3643 |
. . . . 5
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |
13 | 12 | ex 412 |
. . . 4
⊢ (𝐴 = 𝑌 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
14 | 6, 13 | jaoi 856 |
. . 3
⊢ ((𝐴 = 𝑋 ∨ 𝐴 = 𝑌) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
15 | | elpri 4671 |
. . 3
⊢ (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋 ∨ 𝐴 = 𝑌)) |
16 | 14, 15 | syl11 33 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) |
17 | 16 | 3impia 1117 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |