Proof of Theorem elpr2elpr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simprr 773 | . . . . . 6
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑌 ∈ 𝑉) | 
| 2 |  | preq12 4735 | . . . . . . . 8
⊢ ((𝐴 = 𝑋 ∧ 𝑏 = 𝑌) → {𝐴, 𝑏} = {𝑋, 𝑌}) | 
| 3 | 2 | eqcomd 2743 | . . . . . . 7
⊢ ((𝐴 = 𝑋 ∧ 𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 4 | 3 | adantlr 715 | . . . . . 6
⊢ (((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑌) → {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 5 | 1, 4 | rspcedeq2vd 3630 | . . . . 5
⊢ ((𝐴 = 𝑋 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 6 | 5 | ex 412 | . . . 4
⊢ (𝐴 = 𝑋 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) | 
| 7 |  | simprl 771 | . . . . . 6
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → 𝑋 ∈ 𝑉) | 
| 8 |  | preq12 4735 | . . . . . . . 8
⊢ ((𝐴 = 𝑌 ∧ 𝑏 = 𝑋) → {𝐴, 𝑏} = {𝑌, 𝑋}) | 
| 9 |  | prcom 4732 | . . . . . . . 8
⊢ {𝑌, 𝑋} = {𝑋, 𝑌} | 
| 10 | 8, 9 | eqtr2di 2794 | . . . . . . 7
⊢ ((𝐴 = 𝑌 ∧ 𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 11 | 10 | adantlr 715 | . . . . . 6
⊢ (((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) ∧ 𝑏 = 𝑋) → {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 12 | 7, 11 | rspcedeq2vd 3630 | . . . . 5
⊢ ((𝐴 = 𝑌 ∧ (𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) | 
| 13 | 12 | ex 412 | . . . 4
⊢ (𝐴 = 𝑌 → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) | 
| 14 | 6, 13 | jaoi 858 | . . 3
⊢ ((𝐴 = 𝑋 ∨ 𝐴 = 𝑌) → ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) | 
| 15 |  | elpri 4649 | . . 3
⊢ (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋 ∨ 𝐴 = 𝑌)) | 
| 16 | 14, 15 | syl11 33 | . 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})) | 
| 17 | 16 | 3impia 1118 | 1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏 ∈ 𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}) |