MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpr2elpr Structured version   Visualization version   GIF version

Theorem elpr2elpr 4805
Description: For an element 𝐴 of an unordered pair which is a subset of a given set 𝑉, there is another (maybe the same) element 𝑏 of the given set 𝑉 being an element of the unordered pair. (Contributed by AV, 5-Dec-2020.)
Assertion
Ref Expression
elpr2elpr ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Distinct variable groups:   𝐴,𝑏   𝑉,𝑏   𝑋,𝑏   𝑌,𝑏

Proof of Theorem elpr2elpr
StepHypRef Expression
1 simprr 771 . . . . . 6 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → 𝑌𝑉)
2 preq2 4674 . . . . . . . 8 (𝑏 = 𝑌 → {𝐴, 𝑏} = {𝐴, 𝑌})
32eqeq2d 2747 . . . . . . 7 (𝑏 = 𝑌 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌}))
43adantl 483 . . . . . 6 (((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑌) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑌}))
5 preq1 4673 . . . . . . . 8 (𝑋 = 𝐴 → {𝑋, 𝑌} = {𝐴, 𝑌})
65eqcoms 2744 . . . . . . 7 (𝐴 = 𝑋 → {𝑋, 𝑌} = {𝐴, 𝑌})
76adantr 482 . . . . . 6 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑌})
81, 4, 7rspcedvd 3568 . . . . 5 ((𝐴 = 𝑋 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
98ex 414 . . . 4 (𝐴 = 𝑋 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
10 simprl 769 . . . . . 6 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → 𝑋𝑉)
11 preq2 4674 . . . . . . . 8 (𝑏 = 𝑋 → {𝐴, 𝑏} = {𝐴, 𝑋})
1211eqeq2d 2747 . . . . . . 7 (𝑏 = 𝑋 → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋}))
1312adantl 483 . . . . . 6 (((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) ∧ 𝑏 = 𝑋) → ({𝑋, 𝑌} = {𝐴, 𝑏} ↔ {𝑋, 𝑌} = {𝐴, 𝑋}))
14 preq2 4674 . . . . . . . . 9 (𝑌 = 𝐴 → {𝑋, 𝑌} = {𝑋, 𝐴})
1514eqcoms 2744 . . . . . . . 8 (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝑋, 𝐴})
16 prcom 4672 . . . . . . . 8 {𝑋, 𝐴} = {𝐴, 𝑋}
1715, 16eqtrdi 2792 . . . . . . 7 (𝐴 = 𝑌 → {𝑋, 𝑌} = {𝐴, 𝑋})
1817adantr 482 . . . . . 6 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → {𝑋, 𝑌} = {𝐴, 𝑋})
1910, 13, 18rspcedvd 3568 . . . . 5 ((𝐴 = 𝑌 ∧ (𝑋𝑉𝑌𝑉)) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
2019ex 414 . . . 4 (𝐴 = 𝑌 → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
219, 20jaoi 855 . . 3 ((𝐴 = 𝑋𝐴 = 𝑌) → ((𝑋𝑉𝑌𝑉) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
22 elpri 4587 . . 3 (𝐴 ∈ {𝑋, 𝑌} → (𝐴 = 𝑋𝐴 = 𝑌))
2321, 22syl11 33 . 2 ((𝑋𝑉𝑌𝑉) → (𝐴 ∈ {𝑋, 𝑌} → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏}))
24233impia 1117 1 ((𝑋𝑉𝑌𝑉𝐴 ∈ {𝑋, 𝑌}) → ∃𝑏𝑉 {𝑋, 𝑌} = {𝐴, 𝑏})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 845  w3a 1087   = wceq 1539  wcel 2104  wrex 3071  {cpr 4567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3063  df-rex 3072  df-v 3439  df-un 3897  df-sn 4566  df-pr 4568
This theorem is referenced by:  upgredg2vtx  27556
  Copyright terms: Public domain W3C validator