Proof of Theorem elpreqpr
Step | Hyp | Ref
| Expression |
1 | | elpri 4583 |
. 2
⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
2 | | elex 3450 |
. 2
⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) |
3 | | elpreqprlem 4796 |
. . . . 5
⊢ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) |
4 | | eleq1 2826 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) |
5 | | preq1 4669 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → {𝐴, 𝑥} = {𝐵, 𝑥}) |
6 | 5 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐵, 𝑥})) |
7 | 6 | exbidv 1924 |
. . . . . 6
⊢ (𝐴 = 𝐵 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})) |
8 | 4, 7 | imbi12d 345 |
. . . . 5
⊢ (𝐴 = 𝐵 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}))) |
9 | 3, 8 | mpbiri 257 |
. . . 4
⊢ (𝐴 = 𝐵 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
10 | 9 | imp 407 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) |
11 | | elpreqprlem 4796 |
. . . . . 6
⊢ (𝐶 ∈ V → ∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥}) |
12 | | prcom 4668 |
. . . . . . . 8
⊢ {𝐶, 𝐵} = {𝐵, 𝐶} |
13 | 12 | eqeq1i 2743 |
. . . . . . 7
⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥}) |
14 | 13 | exbii 1850 |
. . . . . 6
⊢
(∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}) |
15 | 11, 14 | sylib 217 |
. . . . 5
⊢ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}) |
16 | | eleq1 2826 |
. . . . . 6
⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) |
17 | | preq1 4669 |
. . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝑥} = {𝐶, 𝑥}) |
18 | 17 | eqeq2d 2749 |
. . . . . . 7
⊢ (𝐴 = 𝐶 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥})) |
19 | 18 | exbidv 1924 |
. . . . . 6
⊢ (𝐴 = 𝐶 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})) |
20 | 16, 19 | imbi12d 345 |
. . . . 5
⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}))) |
21 | 15, 20 | mpbiri 257 |
. . . 4
⊢ (𝐴 = 𝐶 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) |
22 | 21 | imp 407 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) |
23 | 10, 22 | jaoian 954 |
. 2
⊢ (((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) |
24 | 1, 2, 23 | syl2anc 584 |
1
⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) |