MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreqpr Structured version   Visualization version   GIF version

Theorem elpreqpr 4797
Description: Equality and membership rule for pairs. (Contributed by Scott Fenton, 7-Dec-2020.)
Assertion
Ref Expression
elpreqpr (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elpreqpr
StepHypRef Expression
1 elpri 4589 . 2 (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵𝐴 = 𝐶))
2 elex 3512 . 2 (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V)
3 elpreqprlem 4796 . . . . 5 (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})
4 eleq1 2900 . . . . . 6 (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V))
5 preq1 4669 . . . . . . . 8 (𝐴 = 𝐵 → {𝐴, 𝑥} = {𝐵, 𝑥})
65eqeq2d 2832 . . . . . . 7 (𝐴 = 𝐵 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐵, 𝑥}))
76exbidv 1922 . . . . . 6 (𝐴 = 𝐵 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}))
84, 7imbi12d 347 . . . . 5 (𝐴 = 𝐵 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})))
93, 8mpbiri 260 . . . 4 (𝐴 = 𝐵 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
109imp 409 . . 3 ((𝐴 = 𝐵𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
11 elpreqprlem 4796 . . . . . 6 (𝐶 ∈ V → ∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥})
12 prcom 4668 . . . . . . . 8 {𝐶, 𝐵} = {𝐵, 𝐶}
1312eqeq1i 2826 . . . . . . 7 ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥})
1413exbii 1848 . . . . . 6 (∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})
1511, 14sylib 220 . . . . 5 (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})
16 eleq1 2900 . . . . . 6 (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V))
17 preq1 4669 . . . . . . . 8 (𝐴 = 𝐶 → {𝐴, 𝑥} = {𝐶, 𝑥})
1817eqeq2d 2832 . . . . . . 7 (𝐴 = 𝐶 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥}))
1918exbidv 1922 . . . . . 6 (𝐴 = 𝐶 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}))
2016, 19imbi12d 347 . . . . 5 (𝐴 = 𝐶 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})))
2115, 20mpbiri 260 . . . 4 (𝐴 = 𝐶 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
2221imp 409 . . 3 ((𝐴 = 𝐶𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
2310, 22jaoian 953 . 2 (((𝐴 = 𝐵𝐴 = 𝐶) ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
241, 2, 23syl2anc 586 1 (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 843   = wceq 1537  wex 1780  wcel 2114  Vcvv 3494  {cpr 4569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3496  df-dif 3939  df-un 3941  df-nul 4292  df-sn 4568  df-pr 4570
This theorem is referenced by:  elpreqprb  4798
  Copyright terms: Public domain W3C validator