Proof of Theorem elpreqpr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | elpri 4649 | . 2
⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | 
| 2 |  | elex 3501 | . 2
⊢ (𝐴 ∈ {𝐵, 𝐶} → 𝐴 ∈ V) | 
| 3 |  | elpreqprlem 4866 | . . . . 5
⊢ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}) | 
| 4 |  | eleq1 2829 | . . . . . 6
⊢ (𝐴 = 𝐵 → (𝐴 ∈ V ↔ 𝐵 ∈ V)) | 
| 5 |  | preq1 4733 | . . . . . . . 8
⊢ (𝐴 = 𝐵 → {𝐴, 𝑥} = {𝐵, 𝑥}) | 
| 6 | 5 | eqeq2d 2748 | . . . . . . 7
⊢ (𝐴 = 𝐵 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐵, 𝑥})) | 
| 7 | 6 | exbidv 1921 | . . . . . 6
⊢ (𝐴 = 𝐵 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥})) | 
| 8 | 4, 7 | imbi12d 344 | . . . . 5
⊢ (𝐴 = 𝐵 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐵 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐵, 𝑥}))) | 
| 9 | 3, 8 | mpbiri 258 | . . . 4
⊢ (𝐴 = 𝐵 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) | 
| 10 | 9 | imp 406 | . . 3
⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | 
| 11 |  | elpreqprlem 4866 | . . . . . 6
⊢ (𝐶 ∈ V → ∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥}) | 
| 12 |  | prcom 4732 | . . . . . . . 8
⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | 
| 13 | 12 | eqeq1i 2742 | . . . . . . 7
⊢ ({𝐶, 𝐵} = {𝐶, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥}) | 
| 14 | 13 | exbii 1848 | . . . . . 6
⊢
(∃𝑥{𝐶, 𝐵} = {𝐶, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}) | 
| 15 | 11, 14 | sylib 218 | . . . . 5
⊢ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}) | 
| 16 |  | eleq1 2829 | . . . . . 6
⊢ (𝐴 = 𝐶 → (𝐴 ∈ V ↔ 𝐶 ∈ V)) | 
| 17 |  | preq1 4733 | . . . . . . . 8
⊢ (𝐴 = 𝐶 → {𝐴, 𝑥} = {𝐶, 𝑥}) | 
| 18 | 17 | eqeq2d 2748 | . . . . . . 7
⊢ (𝐴 = 𝐶 → ({𝐵, 𝐶} = {𝐴, 𝑥} ↔ {𝐵, 𝐶} = {𝐶, 𝑥})) | 
| 19 | 18 | exbidv 1921 | . . . . . 6
⊢ (𝐴 = 𝐶 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} ↔ ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥})) | 
| 20 | 16, 19 | imbi12d 344 | . . . . 5
⊢ (𝐴 = 𝐶 → ((𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) ↔ (𝐶 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐶, 𝑥}))) | 
| 21 | 15, 20 | mpbiri 258 | . . . 4
⊢ (𝐴 = 𝐶 → (𝐴 ∈ V → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})) | 
| 22 | 21 | imp 406 | . . 3
⊢ ((𝐴 = 𝐶 ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | 
| 23 | 10, 22 | jaoian 959 | . 2
⊢ (((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) ∧ 𝐴 ∈ V) → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) | 
| 24 | 1, 2, 23 | syl2anc 584 | 1
⊢ (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}) |