Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwb Structured version   Visualization version   GIF version

Theorem elpwb 4521
 Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwb
StepHypRef Expression
1 elex 3487 . 2 (𝐴 ∈ 𝒫 𝐵𝐴 ∈ V)
2 elpwg 4514 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2biadanii 821 1 (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∈ wcel 2114  Vcvv 3469   ⊆ wss 3908  𝒫 cpw 4511 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2794 This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1782  df-sb 2070  df-clab 2801  df-cleq 2815  df-clel 2894  df-v 3471  df-in 3915  df-ss 3925  df-pw 4513 This theorem is referenced by:  elpwpw  4999  elpwpwel  7474
 Copyright terms: Public domain W3C validator