| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwb | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| elpwb | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ∈ V) | |
| 2 | elpwg 4569 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-pw 4568 |
| This theorem is referenced by: elpwpw 5069 elpwpwel 7746 onsupcl2 43221 onsupuni2 43226 onsupintrab2 43228 onuniintrab2 43231 |
| Copyright terms: Public domain | W3C validator |