MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwb Structured version   Visualization version   GIF version

Theorem elpwb 4572
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwb
StepHypRef Expression
1 elex 3465 . 2 (𝐴 ∈ 𝒫 𝐵𝐴 ∈ V)
2 elpwg 4567 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2biadanii 821 1 (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107  Vcvv 3447  wss 3914  𝒫 cpw 4564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3449  df-in 3921  df-ss 3931  df-pw 4566
This theorem is referenced by:  elpwpw  5066  elpwpwel  7705  onsupcl2  41606  onsupuni2  41611  onsupintrab2  41613  onuniintrab2  41616
  Copyright terms: Public domain W3C validator