MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwb Structured version   Visualization version   GIF version

Theorem elpwb 4567
Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
elpwb (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))

Proof of Theorem elpwb
StepHypRef Expression
1 elex 3465 . 2 (𝐴 ∈ 𝒫 𝐵𝐴 ∈ V)
2 elpwg 4562 . 2 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
31, 2biadanii 821 1 (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-pw 4561
This theorem is referenced by:  elpwpw  5061  elpwpwel  7723  onsupcl2  43207  onsupuni2  43212  onsupintrab2  43214  onuniintrab2  43217
  Copyright terms: Public domain W3C validator