| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elpwb | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of a power class. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| elpwb | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3480 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ∈ V) | |
| 2 | elpwg 4578 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
| 3 | 1, 2 | biadanii 821 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-ss 3943 df-pw 4577 |
| This theorem is referenced by: elpwpw 5078 elpwpwel 7761 onsupcl2 43249 onsupuni2 43254 onsupintrab2 43256 onuniintrab2 43259 |
| Copyright terms: Public domain | W3C validator |