Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni2 Structured version   Visualization version   GIF version

Theorem onsupuni2 43205
Description: The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.)
Assertion
Ref Expression
onsupuni2 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni2
StepHypRef Expression
1 elpwb 4588 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 onsupuni 43204 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = 𝐴)
32ancoms 458 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = 𝐴)
41, 3sylbi 217 1 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  wss 3931  𝒫 cpw 4580   cuni 4887   E cep 5563  Oncon0 6363  supcsup 9462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-tr 5240  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-ord 6366  df-on 6367  df-iota 6494  df-riota 7370  df-sup 9464
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator