| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupuni2 | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupuni2 | ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∪ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwb 4573 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
| 2 | onsupuni 43211 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = ∪ 𝐴) | |
| 3 | 2 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = ∪ 𝐴) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∪ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3916 𝒫 cpw 4565 ∪ cuni 4873 E cep 5539 Oncon0 6334 supcsup 9397 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-tr 5217 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-ord 6337 df-on 6338 df-iota 6466 df-riota 7346 df-sup 9399 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |