![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupuni2 | Structured version Visualization version GIF version |
Description: The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.) |
Ref | Expression |
---|---|
onsupuni2 | ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb 4616 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
2 | onsupuni 43234 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = ∪ 𝐴) | |
3 | 2 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = ∪ 𝐴) |
4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3481 ⊆ wss 3966 𝒫 cpw 4608 ∪ cuni 4915 E cep 5592 Oncon0 6392 supcsup 9487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-ord 6395 df-on 6396 df-iota 6522 df-riota 7395 df-sup 9489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |