Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupuni2 Structured version   Visualization version   GIF version

Theorem onsupuni2 43235
Description: The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.)
Assertion
Ref Expression
onsupuni2 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = 𝐴)

Proof of Theorem onsupuni2
StepHypRef Expression
1 elpwb 4616 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 onsupuni 43234 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = 𝐴)
32ancoms 458 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = 𝐴)
41, 3sylbi 217 1 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  wss 3966  𝒫 cpw 4608   cuni 4915   E cep 5592  Oncon0 6392  supcsup 9487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-ord 6395  df-on 6396  df-iota 6522  df-riota 7395  df-sup 9489
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator