Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwpwel | Structured version Visualization version GIF version |
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
Ref | Expression |
---|---|
elpwpwel | ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexb 7608 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
2 | 1 | anbi1i 624 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵) ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) |
3 | elpwpw 5036 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
4 | elpwb 4549 | . 2 ⊢ (∪ 𝐴 ∈ 𝒫 𝐵 ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 Vcvv 3431 ⊆ wss 3892 𝒫 cpw 4539 ∪ cuni 4845 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-11 2158 ax-ext 2711 ax-sep 5227 ax-pow 5292 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-ral 3071 df-rab 3075 df-v 3433 df-in 3899 df-ss 3909 df-pw 4541 df-uni 4846 |
This theorem is referenced by: elpwunicl 30890 |
Copyright terms: Public domain | W3C validator |