MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwpwel Structured version   Visualization version   GIF version

Theorem elpwpwel 7743
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 7740 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
21anbi1i 624 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
3 elpwpw 5066 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
4 elpwb 4571 . 2 ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
52, 3, 43bitr4i 303 1 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-pow 5320  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3406  df-v 3449  df-in 3921  df-ss 3931  df-pw 4565  df-uni 4872
This theorem is referenced by:  elpwunicl  32483
  Copyright terms: Public domain W3C validator