Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elpwpwel | Structured version Visualization version GIF version |
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
Ref | Expression |
---|---|
elpwpwel | ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexb 7592 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
2 | 1 | anbi1i 623 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵) ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) |
3 | elpwpw 5027 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
4 | elpwb 4540 | . 2 ⊢ (∪ 𝐴 ∈ 𝒫 𝐵 ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4i 302 | 1 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-pow 5283 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 df-pw 4532 df-uni 4837 |
This theorem is referenced by: elpwunicl 30795 |
Copyright terms: Public domain | W3C validator |