MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwpwel Structured version   Visualization version   GIF version

Theorem elpwpwel 7723
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.)
Assertion
Ref Expression
elpwpwel (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwpwel
StepHypRef Expression
1 uniexb 7720 . . 3 (𝐴 ∈ V ↔ 𝐴 ∈ V)
21anbi1i 624 . 2 ((𝐴 ∈ V ∧ 𝐴𝐵) ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
3 elpwpw 5061 . 2 (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ 𝐴𝐵))
4 elpwb 4567 . 2 ( 𝐴 ∈ 𝒫 𝐵 ↔ ( 𝐴 ∈ V ∧ 𝐴𝐵))
52, 3, 43bitr4i 303 1 (𝐴 ∈ 𝒫 𝒫 𝐵 𝐴 ∈ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559   cuni 4867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-pow 5315  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rab 3403  df-v 3446  df-in 3918  df-ss 3928  df-pw 4561  df-uni 4868
This theorem is referenced by:  elpwunicl  32456
  Copyright terms: Public domain W3C validator