![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwpwel | Structured version Visualization version GIF version |
Description: A class belongs to a double power class if and only if its union belongs to the power class. (Contributed by BJ, 22-Jan-2023.) |
Ref | Expression |
---|---|
elpwpwel | ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniexb 7751 | . . 3 ⊢ (𝐴 ∈ V ↔ ∪ 𝐴 ∈ V) | |
2 | 1 | anbi1i 625 | . 2 ⊢ ((𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵) ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) |
3 | elpwpw 5106 | . 2 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ (𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
4 | elpwb 4611 | . 2 ⊢ (∪ 𝐴 ∈ 𝒫 𝐵 ↔ (∪ 𝐴 ∈ V ∧ ∪ 𝐴 ⊆ 𝐵)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ 𝒫 𝒫 𝐵 ↔ ∪ 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-pow 5364 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 |
This theorem is referenced by: elpwunicl 31786 |
Copyright terms: Public domain | W3C validator |