| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupcl2 | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| onsupcl2 | ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 ∈ On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwb 4590 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
| 2 | ssonuni 7783 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
| 3 | 2 | imp 406 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → ∪ 𝐴 ∈ On) |
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 ∈ On) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 𝒫 cpw 4582 ∪ cuni 4889 Oncon0 6365 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-tr 5242 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-ord 6368 df-on 6369 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |