Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupcl2 Structured version   Visualization version   GIF version

Theorem onsupcl2 41964
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupcl2 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)

Proof of Theorem onsupcl2
StepHypRef Expression
1 elpwb 4610 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 ssonuni 7766 . . 3 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
32imp 407 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → 𝐴 ∈ On)
41, 3sylbi 216 1 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  Vcvv 3474  wss 3948  𝒫 cpw 4602   cuni 4908  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-ord 6367  df-on 6368
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator