Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupcl2 Structured version   Visualization version   GIF version

Theorem onsupcl2 42890
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupcl2 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)

Proof of Theorem onsupcl2
StepHypRef Expression
1 elpwb 4615 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 ssonuni 7788 . . 3 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
32imp 405 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → 𝐴 ∈ On)
41, 3sylbi 216 1 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wcel 2099  Vcvv 3462  wss 3947  𝒫 cpw 4607   cuni 4913  Oncon0 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-tr 5271  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-ord 6379  df-on 6380
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator