![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupcl2 | Structured version Visualization version GIF version |
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.) |
Ref | Expression |
---|---|
onsupcl2 | ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 ∈ On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb 4615 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
2 | ssonuni 7788 | . . 3 ⊢ (𝐴 ∈ V → (𝐴 ⊆ On → ∪ 𝐴 ∈ On)) | |
3 | 2 | imp 405 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → ∪ 𝐴 ∈ On) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ 𝒫 On → ∪ 𝐴 ∈ On) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2099 Vcvv 3462 ⊆ wss 3947 𝒫 cpw 4607 ∪ cuni 4913 Oncon0 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |