Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupcl2 Structured version   Visualization version   GIF version

Theorem onsupcl2 43186
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupcl2 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)

Proof of Theorem onsupcl2
StepHypRef Expression
1 elpwb 4630 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 ssonuni 7815 . . 3 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
32imp 406 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → 𝐴 ∈ On)
41, 3sylbi 217 1 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Vcvv 3488  wss 3976  𝒫 cpw 4622   cuni 4931  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator