Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupcl2 Structured version   Visualization version   GIF version

Theorem onsupcl2 43182
Description: The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupcl2 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)

Proof of Theorem onsupcl2
StepHypRef Expression
1 elpwb 4590 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 ssonuni 7783 . . 3 (𝐴 ∈ V → (𝐴 ⊆ On → 𝐴 ∈ On))
32imp 406 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → 𝐴 ∈ On)
41, 3sylbi 217 1 (𝐴 ∈ 𝒫 On → 𝐴 ∈ On)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107  Vcvv 3464  wss 3933  𝒫 cpw 4582   cuni 4889  Oncon0 6365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-br 5126  df-opab 5188  df-tr 5242  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-ord 6368  df-on 6369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator