|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupintrab2 | Structured version Visualization version GIF version | ||
| Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.) | 
| Ref | Expression | 
|---|---|
| onsupintrab2 | ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpwb 4607 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
| 2 | onsupintrab 43248 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | |
| 3 | 2 | ancoms 458 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | 
| 4 | 1, 3 | sylbi 217 | 1 ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3060 {crab 3435 Vcvv 3479 ⊆ wss 3950 𝒫 cpw 4599 ∩ cint 4945 E cep 5582 Oncon0 6383 supcsup 9481 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-br 5143 df-opab 5205 df-tr 5259 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-ord 6386 df-on 6387 df-iota 6513 df-riota 7389 df-sup 9483 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |