Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupintrab2 Structured version   Visualization version   GIF version

Theorem onsupintrab2 41981
Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.)
Assertion
Ref Expression
onsupintrab2 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem onsupintrab2
StepHypRef Expression
1 elpwb 4611 . 2 (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On))
2 onsupintrab 41980 . . 3 ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
32ancoms 460 . 2 ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
41, 3sylbi 216 1 (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = {𝑥 ∈ On ∣ ∀𝑦𝐴 𝑦𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  {crab 3433  Vcvv 3475  wss 3949  𝒫 cpw 4603   cint 4951   E cep 5580  Oncon0 6365  supcsup 9435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-iota 6496  df-riota 7365  df-sup 9437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator