![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupintrab2 | Structured version Visualization version GIF version |
Description: The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.) |
Ref | Expression |
---|---|
onsupintrab2 | ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwb 4605 | . 2 ⊢ (𝐴 ∈ 𝒫 On ↔ (𝐴 ∈ V ∧ 𝐴 ⊆ On)) | |
2 | onsupintrab 42933 | . . 3 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ V) → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) | |
3 | 2 | ancoms 457 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐴 ⊆ On) → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
4 | 1, 3 | sylbi 216 | 1 ⊢ (𝐴 ∈ 𝒫 On → sup(𝐴, On, E ) = ∩ {𝑥 ∈ On ∣ ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 Vcvv 3462 ⊆ wss 3946 𝒫 cpw 4597 ∩ cint 4946 E cep 5577 Oncon0 6368 supcsup 9476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-br 5146 df-opab 5208 df-tr 5263 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-ord 6371 df-on 6372 df-iota 6498 df-riota 7372 df-sup 9478 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |