| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrelim | Structured version Visualization version GIF version | ||
| Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| elrelsrelim | ⊢ (𝑅 ∈ Rels → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrelsrel 38451 | . 2 ⊢ (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝑅 ∈ Rels → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 Rel wrel 5659 Rels crels 38147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-pw 4577 df-rel 5661 df-rels 38449 |
| This theorem is referenced by: elrelscnveq3 38455 elrelscnveq2 38457 dfdisjs5 38676 |
| Copyright terms: Public domain | W3C validator |