Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrelim Structured version   Visualization version   GIF version

Theorem elrelsrelim 38486
Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
elrelsrelim (𝑅 ∈ Rels → Rel 𝑅)

Proof of Theorem elrelsrelim
StepHypRef Expression
1 elrelsrel 38485 . 2 (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅))
21ibi 267 1 (𝑅 ∈ Rels → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  Rel wrel 5646   Rels crels 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ss 3934  df-pw 4568  df-rel 5648  df-rels 38483
This theorem is referenced by:  elrelscnveq3  38489  elrelscnveq2  38491  dfdisjs5  38711
  Copyright terms: Public domain W3C validator