Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrelim Structured version   Visualization version   GIF version

Theorem elrelsrelim 36343
Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
elrelsrelim (𝑅 ∈ Rels → Rel 𝑅)

Proof of Theorem elrelsrelim
StepHypRef Expression
1 elrelsrel 36342 . 2 (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅))
21ibi 270 1 (𝑅 ∈ Rels → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Rel wrel 5556   Rels crels 36072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873  df-ss 3883  df-pw 4515  df-rel 5558  df-rels 36340
This theorem is referenced by:  elrelscnveq3  36346  elrelscnveq2  36348  dfdisjs5  36560
  Copyright terms: Public domain W3C validator