Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrelim Structured version   Visualization version   GIF version

Theorem elrelsrelim 37358
Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
elrelsrelim (𝑅 ∈ Rels → Rel 𝑅)

Proof of Theorem elrelsrelim
StepHypRef Expression
1 elrelsrel 37357 . 2 (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅))
21ibi 267 1 (𝑅 ∈ Rels → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  Rel wrel 5682   Rels crels 37045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-pw 4605  df-rel 5684  df-rels 37355
This theorem is referenced by:  elrelscnveq3  37361  elrelscnveq2  37363  dfdisjs5  37582
  Copyright terms: Public domain W3C validator