| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelsrelim | Structured version Visualization version GIF version | ||
| Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.) |
| Ref | Expression |
|---|---|
| elrelsrelim | ⊢ (𝑅 ∈ Rels → Rel 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrelsrel 38485 | . 2 ⊢ (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅)) | |
| 2 | 1 | ibi 267 | 1 ⊢ (𝑅 ∈ Rels → Rel 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Rel wrel 5646 Rels crels 38178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-pw 4568 df-rel 5648 df-rels 38483 |
| This theorem is referenced by: elrelscnveq3 38489 elrelscnveq2 38491 dfdisjs5 38711 |
| Copyright terms: Public domain | W3C validator |