Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelsrelim Structured version   Visualization version   GIF version

Theorem elrelsrelim 36606
Description: The element of the relations class is a relation. (Contributed by Peter Mazsa, 20-Jul-2019.)
Assertion
Ref Expression
elrelsrelim (𝑅 ∈ Rels → Rel 𝑅)

Proof of Theorem elrelsrelim
StepHypRef Expression
1 elrelsrel 36605 . 2 (𝑅 ∈ Rels → (𝑅 ∈ Rels ↔ Rel 𝑅))
21ibi 266 1 (𝑅 ∈ Rels → Rel 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  Rel wrel 5594   Rels crels 36335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-pw 4535  df-rel 5596  df-rels 36603
This theorem is referenced by:  elrelscnveq3  36609  elrelscnveq2  36611  dfdisjs5  36823
  Copyright terms: Public domain W3C validator