![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
elrelscnveq2 | ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsym 6112 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
3 | elrelsrelim 37661 | . . . . . . 7 ⊢ (𝑅 ∈ Rels → Rel 𝑅) | |
4 | dfrel2 6187 | . . . . . . 7 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ (𝑅 ∈ Rels → ◡◡𝑅 = 𝑅) |
6 | 5 | sseq1d 4012 | . . . . 5 ⊢ (𝑅 ∈ Rels → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) |
7 | cnvsym 6112 | . . . . 5 ⊢ (◡◡𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥)) | |
8 | 6, 7 | bitr3di 285 | . . . 4 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥))) |
9 | relbrcnvg 6103 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) | |
10 | 3, 9 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
11 | relbrcnvg 6103 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
12 | 3, 11 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
13 | 10, 12 | imbi12d 343 | . . . . 5 ⊢ (𝑅 ∈ Rels → ((𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ (𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
14 | 13 | 2albidv 1924 | . . . 4 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
15 | 8, 14 | bitrd 278 | . . 3 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
16 | 2, 15 | anbi12d 629 | . 2 ⊢ (𝑅 ∈ Rels → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦)))) |
17 | eqss 3996 | . 2 ⊢ (◡𝑅 = 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅)) | |
18 | 2albiim 1891 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) | |
19 | 16, 17, 18 | 3bitr4g 313 | 1 ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∀wal 1537 = wceq 1539 ∈ wcel 2104 ⊆ wss 3947 class class class wbr 5147 ◡ccnv 5674 Rel wrel 5680 Rels crels 37348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-rel 5682 df-cnv 5683 df-rels 37658 |
This theorem is referenced by: elrelscnveq4 37667 dfsymrels5 37721 |
Copyright terms: Public domain | W3C validator |