Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq2 Structured version   Visualization version   GIF version

Theorem elrelscnveq2 37667
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq2 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrelscnveq2
StepHypRef Expression
1 cnvsym 6113 . . . 4 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
21a1i 11 . . 3 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
3 elrelsrelim 37662 . . . . . . 7 (𝑅 ∈ Rels → Rel 𝑅)
4 dfrel2 6188 . . . . . . 7 (Rel 𝑅𝑅 = 𝑅)
53, 4sylib 217 . . . . . 6 (𝑅 ∈ Rels → 𝑅 = 𝑅)
65sseq1d 4013 . . . . 5 (𝑅 ∈ Rels → (𝑅𝑅𝑅𝑅))
7 cnvsym 6113 . . . . 5 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
86, 7bitr3di 286 . . . 4 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
9 relbrcnvg 6104 . . . . . . 7 (Rel 𝑅 → (𝑥𝑅𝑦𝑦𝑅𝑥))
103, 9syl 17 . . . . . 6 (𝑅 ∈ Rels → (𝑥𝑅𝑦𝑦𝑅𝑥))
11 relbrcnvg 6104 . . . . . . 7 (Rel 𝑅 → (𝑦𝑅𝑥𝑥𝑅𝑦))
123, 11syl 17 . . . . . 6 (𝑅 ∈ Rels → (𝑦𝑅𝑥𝑥𝑅𝑦))
1310, 12imbi12d 344 . . . . 5 (𝑅 ∈ Rels → ((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (𝑦𝑅𝑥𝑥𝑅𝑦)))
14132albidv 1925 . . . 4 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
158, 14bitrd 279 . . 3 (𝑅 ∈ Rels → (𝑅𝑅 ↔ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
162, 15anbi12d 630 . 2 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦))))
17 eqss 3997 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
18 2albiim 1892 . 2 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ↔ (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) ∧ ∀𝑥𝑦(𝑦𝑅𝑥𝑥𝑅𝑦)))
1916, 17, 183bitr4g 314 1 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538   = wceq 1540  wcel 2105  wss 3948   class class class wbr 5148  ccnv 5675  Rel wrel 5681   Rels crels 37349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-rels 37659
This theorem is referenced by:  elrelscnveq4  37668  dfsymrels5  37722
  Copyright terms: Public domain W3C validator