![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
elrelscnveq2 | ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsym 5756 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
3 | cnvsym 5756 | . . . . 5 ⊢ (◡◡𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥)) | |
4 | elrelsrelim 34785 | . . . . . . 7 ⊢ (𝑅 ∈ Rels → Rel 𝑅) | |
5 | dfrel2 5828 | . . . . . . 7 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
6 | 4, 5 | sylib 210 | . . . . . 6 ⊢ (𝑅 ∈ Rels → ◡◡𝑅 = 𝑅) |
7 | 6 | sseq1d 3857 | . . . . 5 ⊢ (𝑅 ∈ Rels → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) |
8 | 3, 7 | syl5rbbr 278 | . . . 4 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥))) |
9 | relbrcnvg 5749 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) | |
10 | 4, 9 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
11 | relbrcnvg 5749 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
13 | 10, 12 | imbi12d 336 | . . . . 5 ⊢ (𝑅 ∈ Rels → ((𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ (𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
14 | 13 | 2albidv 2022 | . . . 4 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
15 | 8, 14 | bitrd 271 | . . 3 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
16 | 2, 15 | anbi12d 624 | . 2 ⊢ (𝑅 ∈ Rels → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦)))) |
17 | eqss 3842 | . 2 ⊢ (◡𝑅 = 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅)) | |
18 | 2albiim 1992 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) | |
19 | 16, 17, 18 | 3bitr4g 306 | 1 ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∀wal 1654 = wceq 1656 ∈ wcel 2164 ⊆ wss 3798 class class class wbr 4875 ◡ccnv 5345 Rel wrel 5351 Rels crels 34525 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pr 5129 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-rels 34782 |
This theorem is referenced by: elrelscnveq4 34791 dfsymrels5 34841 |
Copyright terms: Public domain | W3C validator |