Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq2 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
elrelscnveq2 | ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvsym 6019 | . . . 4 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑅 ∈ Rels → (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
3 | elrelsrelim 36606 | . . . . . . 7 ⊢ (𝑅 ∈ Rels → Rel 𝑅) | |
4 | dfrel2 6092 | . . . . . . 7 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
5 | 3, 4 | sylib 217 | . . . . . 6 ⊢ (𝑅 ∈ Rels → ◡◡𝑅 = 𝑅) |
6 | 5 | sseq1d 3952 | . . . . 5 ⊢ (𝑅 ∈ Rels → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) |
7 | cnvsym 6019 | . . . . 5 ⊢ (◡◡𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥)) | |
8 | 6, 7 | bitr3di 286 | . . . 4 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥))) |
9 | relbrcnvg 6013 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) | |
10 | 3, 9 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑥◡𝑅𝑦 ↔ 𝑦𝑅𝑥)) |
11 | relbrcnvg 6013 | . . . . . . 7 ⊢ (Rel 𝑅 → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) | |
12 | 3, 11 | syl 17 | . . . . . 6 ⊢ (𝑅 ∈ Rels → (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦)) |
13 | 10, 12 | imbi12d 345 | . . . . 5 ⊢ (𝑅 ∈ Rels → ((𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ (𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
14 | 13 | 2albidv 1926 | . . . 4 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥◡𝑅𝑦 → 𝑦◡𝑅𝑥) ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
15 | 8, 14 | bitrd 278 | . . 3 ⊢ (𝑅 ∈ Rels → (𝑅 ⊆ ◡𝑅 ↔ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) |
16 | 2, 15 | anbi12d 631 | . 2 ⊢ (𝑅 ∈ Rels → ((◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦)))) |
17 | eqss 3936 | . 2 ⊢ (◡𝑅 = 𝑅 ↔ (◡𝑅 ⊆ 𝑅 ∧ 𝑅 ⊆ ◡𝑅)) | |
18 | 2albiim 1893 | . 2 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥) ↔ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) ∧ ∀𝑥∀𝑦(𝑦𝑅𝑥 → 𝑥𝑅𝑦))) | |
19 | 16, 17, 18 | 3bitr4g 314 | 1 ⊢ (𝑅 ∈ Rels → (◡𝑅 = 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 ↔ 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ◡ccnv 5588 Rel wrel 5594 Rels crels 36335 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-rels 36603 |
This theorem is referenced by: elrelscnveq4 36612 dfsymrels5 36662 |
Copyright terms: Public domain | W3C validator |