Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
elrelscnveq3 | ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3946 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅)) | |
2 | cnvsym 6040 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 2 | biimpi 215 | . . . . . 6 ⊢ (◡𝑅 ⊆ 𝑅 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
4 | 3 | a1d 25 | . . . . 5 ⊢ (◡𝑅 ⊆ 𝑅 → (𝑅 ∈ Rels → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → (𝑅 ∈ Rels → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
6 | 5 | com12 32 | . . 3 ⊢ (𝑅 ∈ Rels → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
7 | elrelsrelim 36722 | . . . . . 6 ⊢ (𝑅 ∈ Rels → Rel 𝑅) | |
8 | dfrel2 6115 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝑅 ∈ Rels → ◡◡𝑅 = 𝑅) |
10 | cnvss 5802 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 → ◡◡𝑅 ⊆ ◡𝑅) | |
11 | sseq1 3956 | . . . . . . 7 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) | |
12 | 10, 11 | syl5ibcom 244 | . . . . . 6 ⊢ (◡𝑅 ⊆ 𝑅 → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
13 | 2, 12 | sylbir 234 | . . . . 5 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
14 | 9, 13 | syl5com 31 | . . . 4 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → 𝑅 ⊆ ◡𝑅)) |
15 | 2 | biimpri 227 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → ◡𝑅 ⊆ 𝑅) |
16 | 14, 15 | jca2 514 | . . 3 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅))) |
17 | 6, 16 | impbid 211 | . 2 ⊢ (𝑅 ∈ Rels → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
18 | 1, 17 | bitrid 282 | 1 ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1538 = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 class class class wbr 5087 ◡ccnv 5607 Rel wrel 5613 Rels crels 36407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-br 5088 df-opab 5150 df-xp 5614 df-rel 5615 df-cnv 5616 df-rels 36719 |
This theorem is referenced by: elrelscnveq 36726 |
Copyright terms: Public domain | W3C validator |