Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq3 Structured version   Visualization version   GIF version

Theorem elrelscnveq3 36999
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq3 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrelscnveq3
StepHypRef Expression
1 eqss 3960 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
2 cnvsym 6067 . . . . . . 7 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32biimpi 215 . . . . . 6 (𝑅𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
43a1d 25 . . . . 5 (𝑅𝑅 → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
54adantl 483 . . . 4 ((𝑅𝑅𝑅𝑅) → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
65com12 32 . . 3 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
7 elrelsrelim 36996 . . . . . 6 (𝑅 ∈ Rels → Rel 𝑅)
8 dfrel2 6142 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
97, 8sylib 217 . . . . 5 (𝑅 ∈ Rels → 𝑅 = 𝑅)
10 cnvss 5829 . . . . . . 7 (𝑅𝑅𝑅𝑅)
11 sseq1 3970 . . . . . . 7 (𝑅 = 𝑅 → (𝑅𝑅𝑅𝑅))
1210, 11syl5ibcom 244 . . . . . 6 (𝑅𝑅 → (𝑅 = 𝑅𝑅𝑅))
132, 12sylbir 234 . . . . 5 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅 = 𝑅𝑅𝑅))
149, 13syl5com 31 . . . 4 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅))
152biimpri 227 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅)
1614, 15jca2 515 . . 3 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅𝑅𝑅𝑅)))
176, 16impbid 211 . 2 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
181, 17bitrid 283 1 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1540   = wceq 1542  wcel 2107  wss 3911   class class class wbr 5106  ccnv 5633  Rel wrel 5639   Rels crels 36682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-xp 5640  df-rel 5641  df-cnv 5642  df-rels 36993
This theorem is referenced by:  elrelscnveq  37000
  Copyright terms: Public domain W3C validator