Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq3 Structured version   Visualization version   GIF version

Theorem elrelscnveq3 36609
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq3 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrelscnveq3
StepHypRef Expression
1 eqss 3936 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
2 cnvsym 6019 . . . . . . 7 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32biimpi 215 . . . . . 6 (𝑅𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
43a1d 25 . . . . 5 (𝑅𝑅 → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
54adantl 482 . . . 4 ((𝑅𝑅𝑅𝑅) → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
65com12 32 . . 3 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
7 elrelsrelim 36606 . . . . . 6 (𝑅 ∈ Rels → Rel 𝑅)
8 dfrel2 6092 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
97, 8sylib 217 . . . . 5 (𝑅 ∈ Rels → 𝑅 = 𝑅)
10 cnvss 5781 . . . . . . 7 (𝑅𝑅𝑅𝑅)
11 sseq1 3946 . . . . . . 7 (𝑅 = 𝑅 → (𝑅𝑅𝑅𝑅))
1210, 11syl5ibcom 244 . . . . . 6 (𝑅𝑅 → (𝑅 = 𝑅𝑅𝑅))
132, 12sylbir 234 . . . . 5 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅 = 𝑅𝑅𝑅))
149, 13syl5com 31 . . . 4 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅))
152biimpri 227 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅)
1614, 15jca2 514 . . 3 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅𝑅𝑅𝑅)))
176, 16impbid 211 . 2 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
181, 17syl5bb 283 1 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  ccnv 5588  Rel wrel 5594   Rels crels 36335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-rels 36603
This theorem is referenced by:  elrelscnveq  36610
  Copyright terms: Public domain W3C validator