Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrelscnveq3 Structured version   Visualization version   GIF version

Theorem elrelscnveq3 38447
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.)
Assertion
Ref Expression
elrelscnveq3 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Distinct variable group:   𝑥,𝑅,𝑦

Proof of Theorem elrelscnveq3
StepHypRef Expression
1 eqss 4024 . 2 (𝑅 = 𝑅 ↔ (𝑅𝑅𝑅𝑅))
2 cnvsym 6144 . . . . . . 7 (𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
32biimpi 216 . . . . . 6 (𝑅𝑅 → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
43a1d 25 . . . . 5 (𝑅𝑅 → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
54adantl 481 . . . 4 ((𝑅𝑅𝑅𝑅) → (𝑅 ∈ Rels → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
65com12 32 . . 3 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) → ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
7 elrelsrelim 38444 . . . . . 6 (𝑅 ∈ Rels → Rel 𝑅)
8 dfrel2 6220 . . . . . 6 (Rel 𝑅𝑅 = 𝑅)
97, 8sylib 218 . . . . 5 (𝑅 ∈ Rels → 𝑅 = 𝑅)
10 cnvss 5897 . . . . . . 7 (𝑅𝑅𝑅𝑅)
11 sseq1 4034 . . . . . . 7 (𝑅 = 𝑅 → (𝑅𝑅𝑅𝑅))
1210, 11syl5ibcom 245 . . . . . 6 (𝑅𝑅 → (𝑅 = 𝑅𝑅𝑅))
132, 12sylbir 235 . . . . 5 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅 = 𝑅𝑅𝑅))
149, 13syl5com 31 . . . 4 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅))
152biimpri 228 . . . 4 (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑅𝑅)
1614, 15jca2 513 . . 3 (𝑅 ∈ Rels → (∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥) → (𝑅𝑅𝑅𝑅)))
176, 16impbid 212 . 2 (𝑅 ∈ Rels → ((𝑅𝑅𝑅𝑅) ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
181, 17bitrid 283 1 (𝑅 ∈ Rels → (𝑅 = 𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wss 3976   class class class wbr 5166  ccnv 5699  Rel wrel 5705   Rels crels 38137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-rels 38441
This theorem is referenced by:  elrelscnveq  38448
  Copyright terms: Public domain W3C validator