![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrelscnveq3 | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is symmetric. (Contributed by Peter Mazsa, 22-Aug-2021.) |
Ref | Expression |
---|---|
elrelscnveq3 | ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqss 3993 | . 2 ⊢ (𝑅 = ◡𝑅 ↔ (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅)) | |
2 | cnvsym 6112 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) | |
3 | 2 | biimpi 215 | . . . . . 6 ⊢ (◡𝑅 ⊆ 𝑅 → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥)) |
4 | 3 | a1d 25 | . . . . 5 ⊢ (◡𝑅 ⊆ 𝑅 → (𝑅 ∈ Rels → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → (𝑅 ∈ Rels → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
6 | 5 | com12 32 | . . 3 ⊢ (𝑅 ∈ Rels → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) → ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
7 | elrelsrelim 37884 | . . . . . 6 ⊢ (𝑅 ∈ Rels → Rel 𝑅) | |
8 | dfrel2 6187 | . . . . . 6 ⊢ (Rel 𝑅 ↔ ◡◡𝑅 = 𝑅) | |
9 | 7, 8 | sylib 217 | . . . . 5 ⊢ (𝑅 ∈ Rels → ◡◡𝑅 = 𝑅) |
10 | cnvss 5869 | . . . . . . 7 ⊢ (◡𝑅 ⊆ 𝑅 → ◡◡𝑅 ⊆ ◡𝑅) | |
11 | sseq1 4003 | . . . . . . 7 ⊢ (◡◡𝑅 = 𝑅 → (◡◡𝑅 ⊆ ◡𝑅 ↔ 𝑅 ⊆ ◡𝑅)) | |
12 | 10, 11 | syl5ibcom 244 | . . . . . 6 ⊢ (◡𝑅 ⊆ 𝑅 → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
13 | 2, 12 | sylbir 234 | . . . . 5 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (◡◡𝑅 = 𝑅 → 𝑅 ⊆ ◡𝑅)) |
14 | 9, 13 | syl5com 31 | . . . 4 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → 𝑅 ⊆ ◡𝑅)) |
15 | 2 | biimpri 227 | . . . 4 ⊢ (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → ◡𝑅 ⊆ 𝑅) |
16 | 14, 15 | jca2 513 | . . 3 ⊢ (𝑅 ∈ Rels → (∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥) → (𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅))) |
17 | 6, 16 | impbid 211 | . 2 ⊢ (𝑅 ∈ Rels → ((𝑅 ⊆ ◡𝑅 ∧ ◡𝑅 ⊆ 𝑅) ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
18 | 1, 17 | bitrid 283 | 1 ⊢ (𝑅 ∈ Rels → (𝑅 = ◡𝑅 ↔ ∀𝑥∀𝑦(𝑥𝑅𝑦 → 𝑦𝑅𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 class class class wbr 5142 ◡ccnv 5671 Rel wrel 5677 Rels crels 37572 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-rels 37881 |
This theorem is referenced by: elrelscnveq 37888 |
Copyright terms: Public domain | W3C validator |