Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrels5 Structured version   Visualization version   GIF version

Theorem elrels5 38091
Description: Equivalent expressions for an element of the relations class. (Contributed by Peter Mazsa, 21-Jul-2021.)
Assertion
Ref Expression
elrels5 (𝑅𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅))

Proof of Theorem elrels5
StepHypRef Expression
1 elrelsrel 38089 . 2 (𝑅𝑉 → (𝑅 ∈ Rels ↔ Rel 𝑅))
2 dfrel5 37948 . 2 (Rel 𝑅 ↔ (𝑅 ↾ dom 𝑅) = 𝑅)
31, 2bitrdi 286 1 (𝑅𝑉 → (𝑅 ∈ Rels ↔ (𝑅 ↾ dom 𝑅) = 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  dom cdm 5678  cres 5680  Rel wrel 5683   Rels crels 37781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pr 5429
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-br 5150  df-opab 5212  df-xp 5684  df-rel 5685  df-cnv 5686  df-dm 5688  df-rn 5689  df-res 5690  df-rels 38087
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator