Step | Hyp | Ref
| Expression |
1 | | eqid 2738 |
. . . . . . 7
⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) |
2 | 1 | mptpreima 6130 |
. . . . . 6
⊢ (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} |
3 | | tmdgsum2.1 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ CMnd) |
4 | | tmdgsum2.2 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TopMnd) |
5 | | tmdgsum2.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) |
6 | | tmdgsum.j |
. . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝐺) |
7 | | tmdgsum.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) |
8 | 6, 7 | tmdgsum 23154 |
. . . . . . . 8
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) |
9 | 3, 4, 5, 8 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) |
10 | | tmdgsum2.u |
. . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝐽) |
11 | | cnima 22324 |
. . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈 ∈ 𝐽) → (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ↑ko 𝒫 𝐴)) |
12 | 9, 10, 11 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ↑ko 𝒫 𝐴)) |
13 | 2, 12 | eqeltrrid 2844 |
. . . . 5
⊢ (𝜑 → {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽 ↑ko 𝒫 𝐴)) |
14 | 6, 7 | tmdtopon 23140 |
. . . . . . . 8
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵)) |
15 | | topontop 21970 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) |
16 | 4, 14, 15 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) |
17 | | xkopt 22714 |
. . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝐽}))) |
18 | 16, 5, 17 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝐽 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝐽}))) |
19 | | fnconstg 6646 |
. . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴) |
20 | 4, 14, 19 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝐴 × {𝐽}) Fn 𝐴) |
21 | | eqid 2738 |
. . . . . . . 8
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
22 | 21 | ptval 22629 |
. . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
23 | 5, 20, 22 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 →
(∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
24 | 18, 23 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → (𝐽 ↑ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
25 | 13, 24 | eleqtrd 2841 |
. . . 4
⊢ (𝜑 → {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) |
26 | | oveq2 7263 |
. . . . . 6
⊢ (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋}))) |
27 | 26 | eleq1d 2823 |
. . . . 5
⊢ (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)) |
28 | | tmdgsum2.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
29 | | fconst6g 6647 |
. . . . . . 7
⊢ (𝑋 ∈ 𝐵 → (𝐴 × {𝑋}):𝐴⟶𝐵) |
30 | 28, 29 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐴 × {𝑋}):𝐴⟶𝐵) |
31 | 7 | fvexi 6770 |
. . . . . . 7
⊢ 𝐵 ∈ V |
32 | | elmapg 8586 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑋}):𝐴⟶𝐵)) |
33 | 31, 5, 32 | sylancr 586 |
. . . . . 6
⊢ (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑋}):𝐴⟶𝐵)) |
34 | 30, 33 | mpbird 256 |
. . . . 5
⊢ (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴)) |
35 | | fconstmpt 5640 |
. . . . . . . 8
⊢ (𝐴 × {𝑋}) = (𝑘 ∈ 𝐴 ↦ 𝑋) |
36 | 35 | oveq2i 7266 |
. . . . . . 7
⊢ (𝐺 Σg
(𝐴 × {𝑋})) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) |
37 | | cmnmnd 19317 |
. . . . . . . . 9
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
38 | 3, 37 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) |
39 | | tmdgsum2.t |
. . . . . . . . 9
⊢ · =
(.g‘𝐺) |
40 | 7, 39 | gsumconst 19450 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) |
41 | 38, 5, 28, 40 | syl3anc 1369 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) |
42 | 36, 41 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((♯‘𝐴) · 𝑋)) |
43 | | tmdgsum2.3 |
. . . . . 6
⊢ (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈) |
44 | 42, 43 | eqeltrd 2839 |
. . . . 5
⊢ (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈) |
45 | 27, 34, 44 | elrabd 3619 |
. . . 4
⊢ (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) |
46 | | tg2 22023 |
. . . 4
⊢ (({𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) |
47 | 25, 45, 46 | syl2anc 583 |
. . 3
⊢ (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) |
48 | | eleq2 2827 |
. . . . 5
⊢ (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥)) |
49 | | sseq1 3942 |
. . . . 5
⊢ (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) |
50 | 48, 49 | anbi12d 630 |
. . . 4
⊢ (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) |
51 | 50 | rexab2 3630 |
. . 3
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) |
52 | 47, 51 | sylib 217 |
. 2
⊢ (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) |
53 | | toponuni 21971 |
. . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) |
54 | 4, 14, 53 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = ∪ 𝐽) |
55 | 54 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = ∪ 𝐽) |
56 | 55 | ineq1d 4142 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ∩ ∩ ran
𝑔) = (∪ 𝐽
∩ ∩ ran 𝑔)) |
57 | 16 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top) |
58 | | simplrl 773 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴) |
59 | | simplrr 774 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦)) |
60 | | fvconst2g 7059 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽) |
61 | 60 | eleq2d 2824 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴) → ((𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔‘𝑦) ∈ 𝐽)) |
62 | 61 | ralbidva 3119 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) |
63 | 57, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) |
64 | 59, 63 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽) |
65 | | ffnfv 6974 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝐴⟶𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) |
66 | 58, 64, 65 | sylanbrc 582 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴⟶𝐽) |
67 | 66 | frnd 6592 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ⊆ 𝐽) |
68 | 5 | ad2antrr 722 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin) |
69 | | dffn4 6678 |
. . . . . . . . . . . . . 14
⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴–onto→ran 𝑔) |
70 | 58, 69 | sylib 217 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴–onto→ran 𝑔) |
71 | | fofi 9035 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐴–onto→ran 𝑔) → ran 𝑔 ∈ Fin) |
72 | 68, 70, 71 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin) |
73 | | eqid 2738 |
. . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 |
74 | 73 | rintopn 21966 |
. . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ran 𝑔 ⊆ 𝐽 ∧ ran 𝑔 ∈ Fin) → (∪ 𝐽
∩ ∩ ran 𝑔) ∈ 𝐽) |
75 | 57, 67, 72, 74 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∪
𝐽 ∩ ∩ ran 𝑔) ∈ 𝐽) |
76 | 56, 75 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ∩ ∩ ran
𝑔) ∈ 𝐽) |
77 | 28 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ 𝐵) |
78 | | fconstmpt 5640 |
. . . . . . . . . . . . . 14
⊢ (𝐴 × {𝑋}) = (𝑦 ∈ 𝐴 ↦ 𝑋) |
79 | | simprl 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
80 | 78, 79 | eqeltrrid 2844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) |
81 | | mptelixpg 8681 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Fin → ((𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) |
82 | 68, 81 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) |
83 | 80, 82 | mpbid 231 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦)) |
84 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑔‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝑔‘𝑦))) |
85 | 84 | ralrn 6946 |
. . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) |
86 | 58, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) |
87 | 83, 86 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧) |
88 | | elrint 4919 |
. . . . . . . . . . 11
⊢ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧)) |
89 | 77, 87, 88 | sylanbrc 582 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔)) |
90 | 31 | inex1 5236 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∩ ∩ ran 𝑔) ∈ V |
91 | | ixpconstg 8652 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∩ ∩ ran 𝑔) ∈ V) → X𝑦 ∈
𝐴 (𝐵 ∩ ∩ ran
𝑔) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) |
92 | 68, 90, 91 | sylancl 585 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) |
93 | | inss2 4160 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∩ ∩ ran 𝑔) ⊆ ∩ ran
𝑔 |
94 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ran 𝑔) |
95 | | intss1 4891 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑦) ∈ ran 𝑔 → ∩ ran
𝑔 ⊆ (𝑔‘𝑦)) |
96 | 94, 95 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ∩ ran
𝑔 ⊆ (𝑔‘𝑦)) |
97 | 93, 96 | sstrid 3928 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦)) |
98 | 97 | ralrimiva 3107 |
. . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝐴 → ∀𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦)) |
99 | | ss2ixp 8656 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) |
100 | 58, 98, 99 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) |
101 | 92, 100 | eqsstrrd 3956 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) |
102 | | ssrab 4002 |
. . . . . . . . . . . . 13
⊢ (X𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ (𝐵 ↑m 𝐴) ∧ ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)) |
103 | 102 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (X𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈) |
104 | 103 | ad2antll 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈) |
105 | | ssralv 3983 |
. . . . . . . . . . 11
⊢ (((𝐵 ∩ ∩ ran 𝑔) ↑m 𝐴) ⊆ X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |
106 | 101, 104,
105 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) |
107 | | eleq2 2827 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (𝑋 ∈ 𝑢 ↔ 𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔))) |
108 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (𝑢 ↑m 𝐴) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) |
109 | 108 | raleqdv 3339 |
. . . . . . . . . . . 12
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |
110 | 107, 109 | anbi12d 630 |
. . . . . . . . . . 11
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → ((𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ∧ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) |
111 | 110 | rspcev 3552 |
. . . . . . . . . 10
⊢ (((𝐵 ∩ ∩ ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ∧ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |
112 | 76, 89, 106, 111 | syl12anc 833 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |
113 | 112 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) |
114 | 113 | 3adantr3 1169 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) |
115 | | eleq2 2827 |
. . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦))) |
116 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) |
117 | 115, 116 | anbi12d 630 |
. . . . . . . 8
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) |
118 | 117 | imbi1d 341 |
. . . . . . 7
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) |
119 | 114, 118 | syl5ibrcom 246 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) |
120 | 119 | expimpd 453 |
. . . . 5
⊢ (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) |
121 | 120 | exlimdv 1937 |
. . . 4
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) |
122 | 121 | impd 410 |
. . 3
⊢ (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) |
123 | 122 | exlimdv 1937 |
. 2
⊢ (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) |
124 | 52, 123 | mpd 15 |
1
⊢ (𝜑 → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |