| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eqid 2736 | . . . . . . 7
⊢ (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) | 
| 2 | 1 | mptpreima 6257 | . . . . . 6
⊢ (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} | 
| 3 |  | tmdgsum2.1 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ CMnd) | 
| 4 |  | tmdgsum2.2 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ TopMnd) | 
| 5 |  | tmdgsum2.a | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ Fin) | 
| 6 |  | tmdgsum.j | . . . . . . . . 9
⊢ 𝐽 = (TopOpen‘𝐺) | 
| 7 |  | tmdgsum.b | . . . . . . . . 9
⊢ 𝐵 = (Base‘𝐺) | 
| 8 | 6, 7 | tmdgsum 24104 | . . . . . . . 8
⊢ ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) | 
| 9 | 3, 4, 5, 8 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽)) | 
| 10 |  | tmdgsum2.u | . . . . . . 7
⊢ (𝜑 → 𝑈 ∈ 𝐽) | 
| 11 |  | cnima 23274 | . . . . . . 7
⊢ (((𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ↑ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈 ∈ 𝐽) → (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ↑ko 𝒫 𝐴)) | 
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (◡(𝑓 ∈ (𝐵 ↑m 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ↑ko 𝒫 𝐴)) | 
| 13 | 2, 12 | eqeltrrid 2845 | . . . . 5
⊢ (𝜑 → {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽 ↑ko 𝒫 𝐴)) | 
| 14 | 6, 7 | tmdtopon 24090 | . . . . . . . 8
⊢ (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵)) | 
| 15 |  | topontop 22920 | . . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top) | 
| 16 | 4, 14, 15 | 3syl 18 | . . . . . . 7
⊢ (𝜑 → 𝐽 ∈ Top) | 
| 17 |  | xkopt 23664 | . . . . . . 7
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ↑ko 𝒫
𝐴) =
(∏t‘(𝐴 × {𝐽}))) | 
| 18 | 16, 5, 17 | syl2anc 584 | . . . . . 6
⊢ (𝜑 → (𝐽 ↑ko 𝒫 𝐴) =
(∏t‘(𝐴 × {𝐽}))) | 
| 19 |  | fnconstg 6795 | . . . . . . . 8
⊢ (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴) | 
| 20 | 4, 14, 19 | 3syl 18 | . . . . . . 7
⊢ (𝜑 → (𝐴 × {𝐽}) Fn 𝐴) | 
| 21 |  | eqid 2736 | . . . . . . . 8
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | 
| 22 | 21 | ptval 23579 | . . . . . . 7
⊢ ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 23 | 5, 20, 22 | syl2anc 584 | . . . . . 6
⊢ (𝜑 →
(∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 24 | 18, 23 | eqtrd 2776 | . . . . 5
⊢ (𝜑 → (𝐽 ↑ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 25 | 13, 24 | eleqtrd 2842 | . . . 4
⊢ (𝜑 → {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))})) | 
| 26 |  | oveq2 7440 | . . . . . 6
⊢ (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋}))) | 
| 27 | 26 | eleq1d 2825 | . . . . 5
⊢ (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)) | 
| 28 |  | tmdgsum2.x | . . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐵) | 
| 29 |  | fconst6g 6796 | . . . . . . 7
⊢ (𝑋 ∈ 𝐵 → (𝐴 × {𝑋}):𝐴⟶𝐵) | 
| 30 | 28, 29 | syl 17 | . . . . . 6
⊢ (𝜑 → (𝐴 × {𝑋}):𝐴⟶𝐵) | 
| 31 | 7 | fvexi 6919 | . . . . . . 7
⊢ 𝐵 ∈ V | 
| 32 |  | elmapg 8880 | . . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑋}):𝐴⟶𝐵)) | 
| 33 | 31, 5, 32 | sylancr 587 | . . . . . 6
⊢ (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴) ↔ (𝐴 × {𝑋}):𝐴⟶𝐵)) | 
| 34 | 30, 33 | mpbird 257 | . . . . 5
⊢ (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵 ↑m 𝐴)) | 
| 35 |  | fconstmpt 5746 | . . . . . . . 8
⊢ (𝐴 × {𝑋}) = (𝑘 ∈ 𝐴 ↦ 𝑋) | 
| 36 | 35 | oveq2i 7443 | . . . . . . 7
⊢ (𝐺 Σg
(𝐴 × {𝑋})) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) | 
| 37 |  | cmnmnd 19816 | . . . . . . . . 9
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | 
| 38 | 3, 37 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ Mnd) | 
| 39 |  | tmdgsum2.t | . . . . . . . . 9
⊢  · =
(.g‘𝐺) | 
| 40 | 7, 39 | gsumconst 19953 | . . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋 ∈ 𝐵) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) | 
| 41 | 38, 5, 28, 40 | syl3anc 1372 | . . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) = ((♯‘𝐴) · 𝑋)) | 
| 42 | 36, 41 | eqtrid 2788 | . . . . . 6
⊢ (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((♯‘𝐴) · 𝑋)) | 
| 43 |  | tmdgsum2.3 | . . . . . 6
⊢ (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈) | 
| 44 | 42, 43 | eqeltrd 2840 | . . . . 5
⊢ (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈) | 
| 45 | 27, 34, 44 | elrabd 3693 | . . . 4
⊢ (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) | 
| 46 |  | tg2 22973 | . . . 4
⊢ (({𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) | 
| 47 | 25, 45, 46 | syl2anc 584 | . . 3
⊢ (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) | 
| 48 |  | eleq2 2829 | . . . . 5
⊢ (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥)) | 
| 49 |  | sseq1 4008 | . . . . 5
⊢ (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) | 
| 50 | 48, 49 | anbi12d 632 | . . . 4
⊢ (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) | 
| 51 | 50 | rexab2 3704 | . . 3
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡 ∧ 𝑡 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) | 
| 52 | 47, 51 | sylib 218 | . 2
⊢ (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) | 
| 53 |  | toponuni 22921 | . . . . . . . . . . . . . 14
⊢ (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = ∪ 𝐽) | 
| 54 | 4, 14, 53 | 3syl 18 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = ∪ 𝐽) | 
| 55 | 54 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = ∪ 𝐽) | 
| 56 | 55 | ineq1d 4218 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ∩ ∩ ran
𝑔) = (∪ 𝐽
∩ ∩ ran 𝑔)) | 
| 57 | 16 | ad2antrr 726 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top) | 
| 58 |  | simplrl 776 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴) | 
| 59 |  | simplrr 777 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦)) | 
| 60 |  | fvconst2g 7223 | . . . . . . . . . . . . . . . . . 18
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽) | 
| 61 | 60 | eleq2d 2826 | . . . . . . . . . . . . . . . . 17
⊢ ((𝐽 ∈ Top ∧ 𝑦 ∈ 𝐴) → ((𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔‘𝑦) ∈ 𝐽)) | 
| 62 | 61 | ralbidva 3175 | . . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈ Top →
(∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) | 
| 63 | 57, 62 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) | 
| 64 | 59, 63 | mpbid 232 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽) | 
| 65 |  | ffnfv 7138 | . . . . . . . . . . . . . 14
⊢ (𝑔:𝐴⟶𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ 𝐽)) | 
| 66 | 58, 64, 65 | sylanbrc 583 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴⟶𝐽) | 
| 67 | 66 | frnd 6743 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ⊆ 𝐽) | 
| 68 | 5 | ad2antrr 726 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin) | 
| 69 |  | dffn4 6825 | . . . . . . . . . . . . . 14
⊢ (𝑔 Fn 𝐴 ↔ 𝑔:𝐴–onto→ran 𝑔) | 
| 70 | 58, 69 | sylib 218 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴–onto→ran 𝑔) | 
| 71 |  | fofi 9352 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ 𝑔:𝐴–onto→ran 𝑔) → ran 𝑔 ∈ Fin) | 
| 72 | 68, 70, 71 | syl2anc 584 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin) | 
| 73 |  | eqid 2736 | . . . . . . . . . . . . 13
⊢ ∪ 𝐽 =
∪ 𝐽 | 
| 74 | 73 | rintopn 22916 | . . . . . . . . . . . 12
⊢ ((𝐽 ∈ Top ∧ ran 𝑔 ⊆ 𝐽 ∧ ran 𝑔 ∈ Fin) → (∪ 𝐽
∩ ∩ ran 𝑔) ∈ 𝐽) | 
| 75 | 57, 67, 72, 74 | syl3anc 1372 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∪
𝐽 ∩ ∩ ran 𝑔) ∈ 𝐽) | 
| 76 | 56, 75 | eqeltrd 2840 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ∩ ∩ ran
𝑔) ∈ 𝐽) | 
| 77 | 28 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ 𝐵) | 
| 78 |  | fconstmpt 5746 | . . . . . . . . . . . . . 14
⊢ (𝐴 × {𝑋}) = (𝑦 ∈ 𝐴 ↦ 𝑋) | 
| 79 |  | simprl 770 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) | 
| 80 | 78, 79 | eqeltrrid 2845 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦)) | 
| 81 |  | mptelixpg 8976 | . . . . . . . . . . . . . 14
⊢ (𝐴 ∈ Fin → ((𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) | 
| 82 | 68, 81 | syl 17 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦 ∈ 𝐴 ↦ 𝑋) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) | 
| 83 | 80, 82 | mpbid 232 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦)) | 
| 84 |  | eleq2 2829 | . . . . . . . . . . . . . 14
⊢ (𝑧 = (𝑔‘𝑦) → (𝑋 ∈ 𝑧 ↔ 𝑋 ∈ (𝑔‘𝑦))) | 
| 85 | 84 | ralrn 7107 | . . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) | 
| 86 | 58, 85 | syl 17 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧 ↔ ∀𝑦 ∈ 𝐴 𝑋 ∈ (𝑔‘𝑦))) | 
| 87 | 83, 86 | mpbird 257 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧) | 
| 88 |  | elrint 4988 | . . . . . . . . . . 11
⊢ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ↔ (𝑋 ∈ 𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋 ∈ 𝑧)) | 
| 89 | 77, 87, 88 | sylanbrc 583 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔)) | 
| 90 | 31 | inex1 5316 | . . . . . . . . . . . . 13
⊢ (𝐵 ∩ ∩ ran 𝑔) ∈ V | 
| 91 |  | ixpconstg 8947 | . . . . . . . . . . . . 13
⊢ ((𝐴 ∈ Fin ∧ (𝐵 ∩ ∩ ran 𝑔) ∈ V) → X𝑦 ∈
𝐴 (𝐵 ∩ ∩ ran
𝑔) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) | 
| 92 | 68, 90, 91 | sylancl 586 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) | 
| 93 |  | inss2 4237 | . . . . . . . . . . . . . . 15
⊢ (𝐵 ∩ ∩ ran 𝑔) ⊆ ∩ ran
𝑔 | 
| 94 |  | fnfvelrn 7099 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑔‘𝑦) ∈ ran 𝑔) | 
| 95 |  | intss1 4962 | . . . . . . . . . . . . . . . 16
⊢ ((𝑔‘𝑦) ∈ ran 𝑔 → ∩ ran
𝑔 ⊆ (𝑔‘𝑦)) | 
| 96 | 94, 95 | syl 17 | . . . . . . . . . . . . . . 15
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → ∩ ran
𝑔 ⊆ (𝑔‘𝑦)) | 
| 97 | 93, 96 | sstrid 3994 | . . . . . . . . . . . . . 14
⊢ ((𝑔 Fn 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦)) | 
| 98 | 97 | ralrimiva 3145 | . . . . . . . . . . . . 13
⊢ (𝑔 Fn 𝐴 → ∀𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦)) | 
| 99 |  | ss2ixp 8951 | . . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ (𝑔‘𝑦) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) | 
| 100 | 58, 98, 99 | 3syl 18 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦 ∈ 𝐴 (𝐵 ∩ ∩ ran
𝑔) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) | 
| 101 | 92, 100 | eqsstrrd 4018 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴) ⊆ X𝑦 ∈
𝐴 (𝑔‘𝑦)) | 
| 102 |  | ssrab 4072 | . . . . . . . . . . . . 13
⊢ (X𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ (𝐵 ↑m 𝐴) ∧ ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)) | 
| 103 | 102 | simprbi 496 | . . . . . . . . . . . 12
⊢ (X𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈) | 
| 104 | 103 | ad2antll 729 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈) | 
| 105 |  | ssralv 4051 | . . . . . . . . . . 11
⊢ (((𝐵 ∩ ∩ ran 𝑔) ↑m 𝐴) ⊆ X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (∀𝑓 ∈ X 𝑦 ∈ 𝐴 (𝑔‘𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | 
| 106 | 101, 104,
105 | sylc 65 | . . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) | 
| 107 |  | eleq2 2829 | . . . . . . . . . . . 12
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (𝑋 ∈ 𝑢 ↔ 𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔))) | 
| 108 |  | oveq1 7439 | . . . . . . . . . . . . 13
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (𝑢 ↑m 𝐴) = ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)) | 
| 109 | 108 | raleqdv 3325 | . . . . . . . . . . . 12
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → (∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | 
| 110 | 107, 109 | anbi12d 632 | . . . . . . . . . . 11
⊢ (𝑢 = (𝐵 ∩ ∩ ran
𝑔) → ((𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ∧ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) | 
| 111 | 110 | rspcev 3621 | . . . . . . . . . 10
⊢ (((𝐵 ∩ ∩ ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ∩ ∩ ran
𝑔) ∧ ∀𝑓 ∈ ((𝐵 ∩ ∩ ran
𝑔) ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | 
| 112 | 76, 89, 106, 111 | syl12anc 836 | . . . . . . . . 9
⊢ (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) | 
| 113 | 112 | ex 412 | . . . . . . . 8
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) | 
| 114 | 113 | 3adantr3 1171 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) | 
| 115 |  | eleq2 2829 | . . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦))) | 
| 116 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) | 
| 117 | 115, 116 | anbi12d 632 | . . . . . . . 8
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))) | 
| 118 | 117 | imbi1d 341 | . . . . . . 7
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ∧ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) | 
| 119 | 114, 118 | syl5ibrcom 247 | . . . . . 6
⊢ ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) | 
| 120 | 119 | expimpd 453 | . . . . 5
⊢ (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) | 
| 121 | 120 | exlimdv 1932 | . . . 4
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))) | 
| 122 | 121 | impd 410 | . . 3
⊢ (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) | 
| 123 | 122 | exlimdv 1932 | . 2
⊢ (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥 ∧ 𝑥 ⊆ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))) | 
| 124 | 52, 123 | mpd 15 | 1
⊢ (𝜑 → ∃𝑢 ∈ 𝐽 (𝑋 ∈ 𝑢 ∧ ∀𝑓 ∈ (𝑢 ↑m 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) |