MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tmdgsum2 Structured version   Visualization version   GIF version

Theorem tmdgsum2 22182
Description: For any neighborhood 𝑈 of 𝑛𝑋, there is a neighborhood 𝑢 of 𝑋 such that any sum of 𝑛 elements in 𝑢 sums to an element of 𝑈. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
tmdgsum.j 𝐽 = (TopOpen‘𝐺)
tmdgsum.b 𝐵 = (Base‘𝐺)
tmdgsum2.t · = (.g𝐺)
tmdgsum2.1 (𝜑𝐺 ∈ CMnd)
tmdgsum2.2 (𝜑𝐺 ∈ TopMnd)
tmdgsum2.a (𝜑𝐴 ∈ Fin)
tmdgsum2.u (𝜑𝑈𝐽)
tmdgsum2.x (𝜑𝑋𝐵)
tmdgsum2.3 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
Assertion
Ref Expression
tmdgsum2 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Distinct variable groups:   𝑢,𝑓,𝐴   𝑓,𝐽,𝑢   𝑓,𝑋,𝑢   𝐵,𝑓,𝑢   𝑓,𝐺,𝑢   𝑈,𝑓,𝑢
Allowed substitution hints:   𝜑(𝑢,𝑓)   · (𝑢,𝑓)

Proof of Theorem tmdgsum2
Dummy variables 𝑔 𝑘 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2765 . . . . . . 7 (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) = (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓))
21mptpreima 5816 . . . . . 6 ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) = {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}
3 tmdgsum2.1 . . . . . . . 8 (𝜑𝐺 ∈ CMnd)
4 tmdgsum2.2 . . . . . . . 8 (𝜑𝐺 ∈ TopMnd)
5 tmdgsum2.a . . . . . . . 8 (𝜑𝐴 ∈ Fin)
6 tmdgsum.j . . . . . . . . 9 𝐽 = (TopOpen‘𝐺)
7 tmdgsum.b . . . . . . . . 9 𝐵 = (Base‘𝐺)
86, 7tmdgsum 22181 . . . . . . . 8 ((𝐺 ∈ CMnd ∧ 𝐺 ∈ TopMnd ∧ 𝐴 ∈ Fin) → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
93, 4, 5, 8syl3anc 1490 . . . . . . 7 (𝜑 → (𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽))
10 tmdgsum2.u . . . . . . 7 (𝜑𝑈𝐽)
11 cnima 21352 . . . . . . 7 (((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) ∈ ((𝐽 ^ko 𝒫 𝐴) Cn 𝐽) ∧ 𝑈𝐽) → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
129, 10, 11syl2anc 579 . . . . . 6 (𝜑 → ((𝑓 ∈ (𝐵𝑚 𝐴) ↦ (𝐺 Σg 𝑓)) “ 𝑈) ∈ (𝐽 ^ko 𝒫 𝐴))
132, 12syl5eqelr 2849 . . . . 5 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (𝐽 ^ko 𝒫 𝐴))
146, 7tmdtopon 22167 . . . . . . . 8 (𝐺 ∈ TopMnd → 𝐽 ∈ (TopOn‘𝐵))
15 topontop 21000 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → 𝐽 ∈ Top)
164, 14, 153syl 18 . . . . . . 7 (𝜑𝐽 ∈ Top)
17 xkopt 21741 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐴 ∈ Fin) → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
1816, 5, 17syl2anc 579 . . . . . 6 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (∏t‘(𝐴 × {𝐽})))
19 fnconstg 6277 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝐵) → (𝐴 × {𝐽}) Fn 𝐴)
204, 14, 193syl 18 . . . . . . 7 (𝜑 → (𝐴 × {𝐽}) Fn 𝐴)
21 eqid 2765 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2221ptval 21656 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴 × {𝐽}) Fn 𝐴) → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
235, 20, 22syl2anc 579 . . . . . 6 (𝜑 → (∏t‘(𝐴 × {𝐽})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2418, 23eqtrd 2799 . . . . 5 (𝜑 → (𝐽 ^ko 𝒫 𝐴) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
2513, 24eleqtrd 2846 . . . 4 (𝜑 → {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}))
26 tmdgsum2.x . . . . . . 7 (𝜑𝑋𝐵)
27 fconst6g 6278 . . . . . . 7 (𝑋𝐵 → (𝐴 × {𝑋}):𝐴𝐵)
2826, 27syl 17 . . . . . 6 (𝜑 → (𝐴 × {𝑋}):𝐴𝐵)
297fvexi 6391 . . . . . . 7 𝐵 ∈ V
30 elmapg 8075 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐴 ∈ Fin) → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3129, 5, 30sylancr 581 . . . . . 6 (𝜑 → ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ↔ (𝐴 × {𝑋}):𝐴𝐵))
3228, 31mpbird 248 . . . . 5 (𝜑 → (𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴))
33 fconstmpt 5335 . . . . . . . 8 (𝐴 × {𝑋}) = (𝑘𝐴𝑋)
3433oveq2i 6855 . . . . . . 7 (𝐺 Σg (𝐴 × {𝑋})) = (𝐺 Σg (𝑘𝐴𝑋))
35 cmnmnd 18477 . . . . . . . . 9 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
363, 35syl 17 . . . . . . . 8 (𝜑𝐺 ∈ Mnd)
37 tmdgsum2.t . . . . . . . . 9 · = (.g𝐺)
387, 37gsumconst 18603 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 𝑋𝐵) → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
3936, 5, 26, 38syl3anc 1490 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴𝑋)) = ((♯‘𝐴) · 𝑋))
4034, 39syl5eq 2811 . . . . . 6 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) = ((♯‘𝐴) · 𝑋))
41 tmdgsum2.3 . . . . . 6 (𝜑 → ((♯‘𝐴) · 𝑋) ∈ 𝑈)
4240, 41eqeltrd 2844 . . . . 5 (𝜑 → (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈)
43 oveq2 6852 . . . . . . 7 (𝑓 = (𝐴 × {𝑋}) → (𝐺 Σg 𝑓) = (𝐺 Σg (𝐴 × {𝑋})))
4443eleq1d 2829 . . . . . 6 (𝑓 = (𝐴 × {𝑋}) → ((𝐺 Σg 𝑓) ∈ 𝑈 ↔ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4544elrab 3521 . . . . 5 ((𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ ((𝐴 × {𝑋}) ∈ (𝐵𝑚 𝐴) ∧ (𝐺 Σg (𝐴 × {𝑋})) ∈ 𝑈))
4632, 42, 45sylanbrc 578 . . . 4 (𝜑 → (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})
47 tg2 21052 . . . 4 (({𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ∈ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}) ∧ (𝐴 × {𝑋}) ∈ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
4825, 46, 47syl2anc 579 . . 3 (𝜑 → ∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
49 eleq2 2833 . . . . 5 (𝑡 = 𝑥 → ((𝐴 × {𝑋}) ∈ 𝑡 ↔ (𝐴 × {𝑋}) ∈ 𝑥))
50 sseq1 3788 . . . . 5 (𝑡 = 𝑥 → (𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ 𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
5149, 50anbi12d 624 . . . 4 (𝑡 = 𝑥 → (((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5251rexab2 3532 . . 3 (∃𝑡 ∈ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ((𝐴 × {𝑋}) ∈ 𝑡𝑡 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
5348, 52sylib 209 . 2 (𝜑 → ∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
54 toponuni 21001 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝐵) → 𝐵 = 𝐽)
554, 14, 543syl 18 . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐽)
5655ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐵 = 𝐽)
5756ineq1d 3977 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) = ( 𝐽 ran 𝑔))
5816ad2antrr 717 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐽 ∈ Top)
59 simplrl 795 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔 Fn 𝐴)
60 simplrr 796 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))
61 fvconst2g 6662 . . . . . . . . . . . . . . . . . 18 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝐴 × {𝐽})‘𝑦) = 𝐽)
6261eleq2d 2830 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ Top ∧ 𝑦𝐴) → ((𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ (𝑔𝑦) ∈ 𝐽))
6362ralbidva 3132 . . . . . . . . . . . . . . . 16 (𝐽 ∈ Top → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6458, 63syl 17 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ↔ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6560, 64mpbid 223 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽)
66 ffnfv 6580 . . . . . . . . . . . . . 14 (𝑔:𝐴𝐽 ↔ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ 𝐽))
6759, 65, 66sylanbrc 578 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴𝐽)
6867frnd 6232 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔𝐽)
695ad2antrr 717 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝐴 ∈ Fin)
70 dffn4 6306 . . . . . . . . . . . . . 14 (𝑔 Fn 𝐴𝑔:𝐴onto→ran 𝑔)
7159, 70sylib 209 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑔:𝐴onto→ran 𝑔)
72 fofi 8461 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ 𝑔:𝐴onto→ran 𝑔) → ran 𝑔 ∈ Fin)
7369, 71, 72syl2anc 579 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ran 𝑔 ∈ Fin)
74 eqid 2765 . . . . . . . . . . . . 13 𝐽 = 𝐽
7574rintopn 20996 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ ran 𝑔𝐽 ∧ ran 𝑔 ∈ Fin) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7658, 68, 73, 75syl3anc 1490 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ( 𝐽 ran 𝑔) ∈ 𝐽)
7757, 76eqeltrd 2844 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐵 ran 𝑔) ∈ 𝐽)
7826ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋𝐵)
79 fconstmpt 5335 . . . . . . . . . . . . . 14 (𝐴 × {𝑋}) = (𝑦𝐴𝑋)
80 simprl 787 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦))
8179, 80syl5eqelr 2849 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦))
82 mptelixpg 8152 . . . . . . . . . . . . . 14 (𝐴 ∈ Fin → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8369, 82syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝑦𝐴𝑋) ∈ X𝑦𝐴 (𝑔𝑦) ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8481, 83mpbid 223 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦))
85 eleq2 2833 . . . . . . . . . . . . . 14 (𝑧 = (𝑔𝑦) → (𝑋𝑧𝑋 ∈ (𝑔𝑦)))
8685ralrn 6554 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8759, 86syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → (∀𝑧 ∈ ran 𝑔 𝑋𝑧 ↔ ∀𝑦𝐴 𝑋 ∈ (𝑔𝑦)))
8884, 87mpbird 248 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑧 ∈ ran 𝑔 𝑋𝑧)
89 elrint 4676 . . . . . . . . . . 11 (𝑋 ∈ (𝐵 ran 𝑔) ↔ (𝑋𝐵 ∧ ∀𝑧 ∈ ran 𝑔 𝑋𝑧))
9078, 88, 89sylanbrc 578 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → 𝑋 ∈ (𝐵 ran 𝑔))
9129inex1 4962 . . . . . . . . . . . . 13 (𝐵 ran 𝑔) ∈ V
92 ixpconstg 8124 . . . . . . . . . . . . 13 ((𝐴 ∈ Fin ∧ (𝐵 ran 𝑔) ∈ V) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
9369, 91, 92sylancl 580 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
94 inss2 3995 . . . . . . . . . . . . . . 15 (𝐵 ran 𝑔) ⊆ ran 𝑔
95 fnfvelrn 6548 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝐴𝑦𝐴) → (𝑔𝑦) ∈ ran 𝑔)
96 intss1 4650 . . . . . . . . . . . . . . . 16 ((𝑔𝑦) ∈ ran 𝑔 ran 𝑔 ⊆ (𝑔𝑦))
9795, 96syl 17 . . . . . . . . . . . . . . 15 ((𝑔 Fn 𝐴𝑦𝐴) → ran 𝑔 ⊆ (𝑔𝑦))
9894, 97syl5ss 3774 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝐴𝑦𝐴) → (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
9998ralrimiva 3113 . . . . . . . . . . . . 13 (𝑔 Fn 𝐴 → ∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦))
100 ss2ixp 8128 . . . . . . . . . . . . 13 (∀𝑦𝐴 (𝐵 ran 𝑔) ⊆ (𝑔𝑦) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10159, 99, 1003syl 18 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → X𝑦𝐴 (𝐵 ran 𝑔) ⊆ X𝑦𝐴 (𝑔𝑦))
10293, 101eqsstr3d 3802 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦))
103 ssrab 3842 . . . . . . . . . . . . 13 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ (X𝑦𝐴 (𝑔𝑦) ⊆ (𝐵𝑚 𝐴) ∧ ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈))
104103simprbi 490 . . . . . . . . . . . 12 (X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
105104ad2antll 720 . . . . . . . . . . 11 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈)
106 ssralv 3828 . . . . . . . . . . 11 (((𝐵 ran 𝑔) ↑𝑚 𝐴) ⊆ X𝑦𝐴 (𝑔𝑦) → (∀𝑓X 𝑦𝐴 (𝑔𝑦)(𝐺 Σg 𝑓) ∈ 𝑈 → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
107102, 105, 106sylc 65 . . . . . . . . . 10 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)
108 eleq2 2833 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (𝑋𝑢𝑋 ∈ (𝐵 ran 𝑔)))
109 oveq1 6851 . . . . . . . . . . . . 13 (𝑢 = (𝐵 ran 𝑔) → (𝑢𝑚 𝐴) = ((𝐵 ran 𝑔) ↑𝑚 𝐴))
110109raleqdv 3292 . . . . . . . . . . . 12 (𝑢 = (𝐵 ran 𝑔) → (∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈 ↔ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
111108, 110anbi12d 624 . . . . . . . . . . 11 (𝑢 = (𝐵 ran 𝑔) → ((𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈) ↔ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
112111rspcev 3462 . . . . . . . . . 10 (((𝐵 ran 𝑔) ∈ 𝐽 ∧ (𝑋 ∈ (𝐵 ran 𝑔) ∧ ∀𝑓 ∈ ((𝐵 ran 𝑔) ↑𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
11377, 90, 107, 112syl12anc 865 . . . . . . . . 9 (((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) ∧ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
114113ex 401 . . . . . . . 8 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
1151143adantr3 1212 . . . . . . 7 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
116 eleq2 2833 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((𝐴 × {𝑋}) ∈ 𝑥 ↔ (𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦)))
117 sseq1 3788 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈} ↔ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}))
118116, 117anbi12d 624 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) ↔ ((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})))
119118imbi1d 332 . . . . . . 7 (𝑥 = X𝑦𝐴 (𝑔𝑦) → ((((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)) ↔ (((𝐴 × {𝑋}) ∈ X𝑦𝐴 (𝑔𝑦) ∧ X𝑦𝐴 (𝑔𝑦) ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
120115, 119syl5ibrcom 238 . . . . . 6 ((𝜑 ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
121120expimpd 445 . . . . 5 (𝜑 → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
122121exlimdv 2028 . . . 4 (𝜑 → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → (((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈}) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))))
123122impd 398 . . 3 (𝜑 → ((∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
124123exlimdv 2028 . 2 (𝜑 → (∃𝑥(∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ ((𝐴 × {𝐽})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = ((𝐴 × {𝐽})‘𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) ∧ ((𝐴 × {𝑋}) ∈ 𝑥𝑥 ⊆ {𝑓 ∈ (𝐵𝑚 𝐴) ∣ (𝐺 Σg 𝑓) ∈ 𝑈})) → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈)))
12553, 124mpd 15 1 (𝜑 → ∃𝑢𝐽 (𝑋𝑢 ∧ ∀𝑓 ∈ (𝑢𝑚 𝐴)(𝐺 Σg 𝑓) ∈ 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  {cab 2751  wral 3055  wrex 3056  {crab 3059  Vcvv 3350  cdif 3731  cin 3733  wss 3734  𝒫 cpw 4317  {csn 4336   cuni 4596   cint 4635  cmpt 4890   × cxp 5277  ccnv 5278  ran crn 5280  cima 5282   Fn wfn 6065  wf 6066  ontowfo 6068  cfv 6070  (class class class)co 6844  𝑚 cmap 8062  Xcixp 8115  Fincfn 8162  chash 13324  Basecbs 16133  TopOpenctopn 16351  topGenctg 16367  tcpt 16368   Σg cgsu 16370  Mndcmnd 17563  .gcmg 17810  CMndccmn 18462  Topctop 20980  TopOnctopon 20997   Cn ccn 21311   ^ko cxko 21647  TopMndctmd 22156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-supp 7500  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-er 7949  df-map 8064  df-ixp 8116  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-fsupp 8485  df-fi 8526  df-oi 8624  df-card 9018  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-nn 11277  df-2 11337  df-n0 11541  df-z 11627  df-uz 11890  df-fz 12537  df-fzo 12677  df-seq 13012  df-hash 13325  df-ndx 16136  df-slot 16137  df-base 16139  df-sets 16140  df-ress 16141  df-plusg 16230  df-rest 16352  df-0g 16371  df-gsum 16372  df-topgen 16373  df-pt 16374  df-mre 16515  df-mrc 16516  df-acs 16518  df-plusf 17510  df-mgm 17511  df-sgrp 17553  df-mnd 17564  df-submnd 17605  df-mulg 17811  df-cntz 18016  df-cmn 18464  df-top 20981  df-topon 20998  df-topsp 21020  df-bases 21033  df-cn 21314  df-cnp 21315  df-cmp 21473  df-tx 21648  df-xko 21649  df-tmd 22158
This theorem is referenced by:  tsmsxp  22240
  Copyright terms: Public domain W3C validator