| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4900 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
| 2 | 1 | ineq2d 4169 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
| 3 | int0 4912 | . . . 4 ⊢ ∩ ∅ = V | |
| 4 | 3 | ineq2i 4166 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
| 5 | inv1 4347 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2756 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2784 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 Vcvv 3437 ∩ cin 3897 ∅c0 4282 ∩ cint 4897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4283 df-int 4898 |
| This theorem is referenced by: incexclem 15745 incexc 15746 mrerintcl 17501 ismred2 17507 txtube 23556 bj-mooreset 37167 bj-ismoored0 37171 bj-ismooredr2 37175 |
| Copyright terms: Public domain | W3C validator |