MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4995
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4954 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4213 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4967 . . . 4 ∅ = V
43ineq2i 4210 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4395 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2758 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2786 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3472  cin 3948  c0 4323   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4324  df-int 4952
This theorem is referenced by:  incexclem  15788  incexc  15789  mrerintcl  17547  ismred2  17553  txtube  23366  bj-mooreset  36288  bj-ismoored0  36292  bj-ismooredr2  36296
  Copyright terms: Public domain W3C validator