MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4993
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4954 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4228 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4967 . . . 4 ∅ = V
43ineq2i 4225 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4404 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2763 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2791 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3478  cin 3962  c0 4339   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-in 3970  df-ss 3980  df-nul 4340  df-int 4952
This theorem is referenced by:  incexclem  15869  incexc  15870  mrerintcl  17642  ismred2  17648  txtube  23664  bj-mooreset  37085  bj-ismoored0  37089  bj-ismooredr2  37093
  Copyright terms: Public domain W3C validator