MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 5012
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4973 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4241 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4986 . . . 4 ∅ = V
43ineq2i 4238 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4421 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2768 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2796 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  Vcvv 3488  cin 3975  c0 4352   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-in 3983  df-ss 3993  df-nul 4353  df-int 4971
This theorem is referenced by:  incexclem  15884  incexc  15885  mrerintcl  17655  ismred2  17661  txtube  23669  bj-mooreset  37068  bj-ismoored0  37072  bj-ismooredr2  37076
  Copyright terms: Public domain W3C validator