![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version |
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4973 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
2 | 1 | ineq2d 4241 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
3 | int0 4986 | . . . 4 ⊢ ∩ ∅ = V | |
4 | 3 | ineq2i 4238 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
5 | inv1 4421 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2768 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
7 | 2, 6 | eqtrdi 2796 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 Vcvv 3488 ∩ cin 3975 ∅c0 4352 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-int 4971 |
This theorem is referenced by: incexclem 15884 incexc 15885 mrerintcl 17655 ismred2 17661 txtube 23669 bj-mooreset 37068 bj-ismoored0 37072 bj-ismooredr2 37076 |
Copyright terms: Public domain | W3C validator |