MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4969
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4930 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4200 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4943 . . . 4 ∅ = V
43ineq2i 4197 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4378 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2759 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2787 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3464  cin 3930  c0 4313   cint 4927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-in 3938  df-ss 3948  df-nul 4314  df-int 4928
This theorem is referenced by:  incexclem  15857  incexc  15858  mrerintcl  17614  ismred2  17620  txtube  23583  bj-mooreset  37125  bj-ismoored0  37129  bj-ismooredr2  37133
  Copyright terms: Public domain W3C validator