| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4913 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
| 2 | 1 | ineq2d 4183 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
| 3 | int0 4926 | . . . 4 ⊢ ∩ ∅ = V | |
| 4 | 3 | ineq2i 4180 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
| 5 | inv1 4361 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2752 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2780 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3447 ∩ cin 3913 ∅c0 4296 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-int 4911 |
| This theorem is referenced by: incexclem 15802 incexc 15803 mrerintcl 17558 ismred2 17564 txtube 23527 bj-mooreset 37090 bj-ismoored0 37094 bj-ismooredr2 37098 |
| Copyright terms: Public domain | W3C validator |