Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version |
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4882 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
2 | 1 | ineq2d 4146 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
3 | int0 4893 | . . . 4 ⊢ ∩ ∅ = V | |
4 | 3 | ineq2i 4143 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
5 | inv1 4328 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2766 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
7 | 2, 6 | eqtrdi 2794 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3432 ∩ cin 3886 ∅c0 4256 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-int 4880 |
This theorem is referenced by: incexclem 15548 incexc 15549 mrerintcl 17306 ismred2 17312 txtube 22791 bj-mooreset 35273 bj-ismoored0 35277 bj-ismooredr2 35281 |
Copyright terms: Public domain | W3C validator |