MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4955
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4916 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4186 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4929 . . . 4 ∅ = V
43ineq2i 4183 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4364 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2753 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2781 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  Vcvv 3450  cin 3916  c0 4299   cint 4913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934  df-nul 4300  df-int 4914
This theorem is referenced by:  incexclem  15809  incexc  15810  mrerintcl  17565  ismred2  17571  txtube  23534  bj-mooreset  37097  bj-ismoored0  37101  bj-ismooredr2  37105
  Copyright terms: Public domain W3C validator