MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4938
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4900 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4170 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4912 . . . 4 ∅ = V
43ineq2i 4167 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4348 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2754 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2782 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  Vcvv 3436  cin 3901  c0 4283   cint 4897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-in 3909  df-ss 3919  df-nul 4284  df-int 4898
This theorem is referenced by:  incexclem  15740  incexc  15741  mrerintcl  17496  ismred2  17502  txtube  23553  bj-mooreset  37135  bj-ismoored0  37139  bj-ismooredr2  37143
  Copyright terms: Public domain W3C validator