| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4902 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
| 2 | 1 | ineq2d 4173 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
| 3 | int0 4915 | . . . 4 ⊢ ∩ ∅ = V | |
| 4 | 3 | ineq2i 4170 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
| 5 | inv1 4351 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2752 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2780 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3438 ∩ cin 3904 ∅c0 4286 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 df-nul 4287 df-int 4900 |
| This theorem is referenced by: incexclem 15761 incexc 15762 mrerintcl 17517 ismred2 17523 txtube 23543 bj-mooreset 37075 bj-ismoored0 37079 bj-ismooredr2 37083 |
| Copyright terms: Public domain | W3C validator |