MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4918
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4879 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4143 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4890 . . . 4 ∅ = V
43ineq2i 4140 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4325 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2766 . 2 (𝐴 ∅) = 𝐴
72, 6eqtrdi 2795 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  Vcvv 3422  cin 3882  c0 4253   cint 4876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-int 4877
This theorem is referenced by:  incexclem  15476  incexc  15477  mrerintcl  17223  ismred2  17229  txtube  22699  bj-mooreset  35200  bj-ismoored0  35204  bj-ismooredr2  35208
  Copyright terms: Public domain W3C validator