![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version |
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4954 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
2 | 1 | ineq2d 4213 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
3 | int0 4967 | . . . 4 ⊢ ∩ ∅ = V | |
4 | 3 | ineq2i 4210 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
5 | inv1 4395 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
6 | 4, 5 | eqtri 2758 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
7 | 2, 6 | eqtrdi 2786 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 Vcvv 3472 ∩ cin 3948 ∅c0 4323 ∩ cint 4951 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-in 3956 df-ss 3966 df-nul 4324 df-int 4952 |
This theorem is referenced by: incexclem 15788 incexc 15789 mrerintcl 17547 ismred2 17553 txtube 23366 bj-mooreset 36288 bj-ismoored0 36292 bj-ismooredr2 36296 |
Copyright terms: Public domain | W3C validator |