MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rint0 Structured version   Visualization version   GIF version

Theorem rint0 4739
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rint0 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)

Proof of Theorem rint0
StepHypRef Expression
1 inteq 4702 . . 3 (𝑋 = ∅ → 𝑋 = ∅)
21ineq2d 4043 . 2 (𝑋 = ∅ → (𝐴 𝑋) = (𝐴 ∅))
3 int0 4713 . . . 4 ∅ = V
43ineq2i 4040 . . 3 (𝐴 ∅) = (𝐴 ∩ V)
5 inv1 4197 . . 3 (𝐴 ∩ V) = 𝐴
64, 5eqtri 2849 . 2 (𝐴 ∅) = 𝐴
72, 6syl6eq 2877 1 (𝑋 = ∅ → (𝐴 𝑋) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1656  Vcvv 3414  cin 3797  c0 4146   cint 4699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-ext 2803
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-v 3416  df-dif 3801  df-in 3805  df-ss 3812  df-nul 4147  df-int 4700
This theorem is referenced by:  incexclem  14949  incexc  14950  mrerintcl  16617  ismred2  16623  txtube  21821  bj-mooreset  33578  bj-ismoored0  33583  bj-ismooredr2  33587
  Copyright terms: Public domain W3C validator