| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version GIF version | ||
| Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
| Ref | Expression |
|---|---|
| rint0 | ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq 4930 | . . 3 ⊢ (𝑋 = ∅ → ∩ 𝑋 = ∩ ∅) | |
| 2 | 1 | ineq2d 4200 | . 2 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = (𝐴 ∩ ∩ ∅)) |
| 3 | int0 4943 | . . . 4 ⊢ ∩ ∅ = V | |
| 4 | 3 | ineq2i 4197 | . . 3 ⊢ (𝐴 ∩ ∩ ∅) = (𝐴 ∩ V) |
| 5 | inv1 4378 | . . 3 ⊢ (𝐴 ∩ V) = 𝐴 | |
| 6 | 4, 5 | eqtri 2759 | . 2 ⊢ (𝐴 ∩ ∩ ∅) = 𝐴 |
| 7 | 2, 6 | eqtrdi 2787 | 1 ⊢ (𝑋 = ∅ → (𝐴 ∩ ∩ 𝑋) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 Vcvv 3464 ∩ cin 3930 ∅c0 4313 ∩ cint 4927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-int 4928 |
| This theorem is referenced by: incexclem 15857 incexc 15858 mrerintcl 17614 ismred2 17620 txtube 23583 bj-mooreset 37125 bj-ismoored0 37129 bj-ismooredr2 37133 |
| Copyright terms: Public domain | W3C validator |