MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnplem Structured version   Visualization version   GIF version

Theorem ptcnplem 22680
Description: Lemma for ptcnp 22681. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
ptcnplem.1 𝑘𝜓
ptcnplem.2 ((𝜑𝜓) → 𝐺 Fn 𝐼)
ptcnplem.3 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ (𝐹𝑘))
ptcnplem.4 ((𝜑𝜓) → 𝑊 ∈ Fin)
ptcnplem.5 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝐺𝑘) = (𝐹𝑘))
ptcnplem.6 ((𝜑𝜓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝐺𝑘))
Assertion
Ref Expression
ptcnplem ((𝜑𝜓) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
Distinct variable groups:   𝑧,𝐴   𝑥,𝑘,𝑧,𝐷   𝑘,𝐼,𝑥,𝑧   𝑥,𝐺,𝑧   𝑘,𝐽,𝑧   𝑧,𝐾   𝜑,𝑘,𝑥,𝑧   𝑘,𝐹,𝑥,𝑧   𝑘,𝑉,𝑥   𝑘,𝑊,𝑧   𝑘,𝑋,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑘)   𝐴(𝑥,𝑘)   𝐺(𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)   𝑉(𝑧)   𝑊(𝑥)

Proof of Theorem ptcnplem
Dummy variables 𝑓 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnplem.4 . . . 4 ((𝜑𝜓) → 𝑊 ∈ Fin)
2 inss2 4160 . . . 4 (𝐼𝑊) ⊆ 𝑊
3 ssfi 8918 . . . 4 ((𝑊 ∈ Fin ∧ (𝐼𝑊) ⊆ 𝑊) → (𝐼𝑊) ∈ Fin)
41, 2, 3sylancl 585 . . 3 ((𝜑𝜓) → (𝐼𝑊) ∈ Fin)
5 nfv 1918 . . . . 5 𝑘𝜑
6 ptcnplem.1 . . . . 5 𝑘𝜓
75, 6nfan 1903 . . . 4 𝑘(𝜑𝜓)
8 elinel1 4125 . . . . . 6 (𝑘 ∈ (𝐼𝑊) → 𝑘𝐼)
9 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
109adantlr 711 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
11 ptcnplem.3 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ (𝐹𝑘))
12 ptcnp.6 . . . . . . . . . . . 12 (𝜑𝐷𝑋)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐷𝑋)
14 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝑥𝑋)
15 ptcnp.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘𝑋))
1615adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
17 ptcnp.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝐼⟶Top)
1817ffvelrnda 6943 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
19 toptopon2 21975 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
2018, 19sylib 217 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
21 cnpf2 22309 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
2216, 20, 9, 21syl3anc 1369 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
23 eqid 2738 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2423fmpt 6966 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋 𝐴 (𝐹𝑘) ↔ (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
2522, 24sylibr 233 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
2625r19.21bi 3132 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
2723fvmpt2 6868 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝐴 (𝐹𝑘)) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2814, 26, 27syl2anc 583 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2928an32s 648 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
3029mpteq2dva 5170 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = (𝑘𝐼𝐴))
31 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
32 ptcnp.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
3332adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → 𝐼𝑉)
3433mptexd 7082 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ V)
35 eqid 2738 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = (𝑥𝑋 ↦ (𝑘𝐼𝐴))
3635fvmpt2 6868 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑘𝐼𝐴) ∈ V) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
3731, 34, 36syl2anc 583 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
3830, 37eqtr4d 2781 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
3938ralrimiva 3107 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → ∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
41 nfcv 2906 . . . . . . . . . . . . . 14 𝑥𝐼
42 nffvmpt1 6767 . . . . . . . . . . . . . 14 𝑥((𝑥𝑋𝐴)‘𝐷)
4341, 42nfmpt 5177 . . . . . . . . . . . . 13 𝑥(𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷))
44 nffvmpt1 6767 . . . . . . . . . . . . 13 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
4543, 44nfeq 2919 . . . . . . . . . . . 12 𝑥(𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
46 fveq2 6756 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝐷))
4746mpteq2dv 5172 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)))
48 fveq2 6756 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷))
4947, 48eqeq12d 2754 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ↔ (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)))
5045, 49rspc 3539 . . . . . . . . . . 11 (𝐷𝑋 → (∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)))
5113, 40, 50sylc 65 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷))
52 ptcnplem.6 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝐺𝑘))
5351, 52eqeltrd 2839 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘))
5432adantr 480 . . . . . . . . . 10 ((𝜑𝜓) → 𝐼𝑉)
55 mptelixpg 8681 . . . . . . . . . 10 (𝐼𝑉 → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)))
5654, 55syl 17 . . . . . . . . 9 ((𝜑𝜓) → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)))
5753, 56mpbid 231 . . . . . . . 8 ((𝜑𝜓) → ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘))
5857r19.21bi 3132 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘))
59 cnpimaex 22315 . . . . . . 7 (((𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷) ∧ (𝐺𝑘) ∈ (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
6010, 11, 58, 59syl3anc 1369 . . . . . 6 (((𝜑𝜓) ∧ 𝑘𝐼) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
618, 60sylan2 592 . . . . 5 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
6261ex 412 . . . 4 ((𝜑𝜓) → (𝑘 ∈ (𝐼𝑊) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘))))
637, 62ralrimi 3139 . . 3 ((𝜑𝜓) → ∀𝑘 ∈ (𝐼𝑊)∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
64 eleq2 2827 . . . . 5 (𝑢 = (𝑓𝑘) → (𝐷𝑢𝐷 ∈ (𝑓𝑘)))
65 imaeq2 5954 . . . . . 6 (𝑢 = (𝑓𝑘) → ((𝑥𝑋𝐴) “ 𝑢) = ((𝑥𝑋𝐴) “ (𝑓𝑘)))
6665sseq1d 3948 . . . . 5 (𝑢 = (𝑓𝑘) → (((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘) ↔ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))
6764, 66anbi12d 630 . . . 4 (𝑢 = (𝑓𝑘) → ((𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)) ↔ (𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
6867ac6sfi 8988 . . 3 (((𝐼𝑊) ∈ Fin ∧ ∀𝑘 ∈ (𝐼𝑊)∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘))) → ∃𝑓(𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
694, 63, 68syl2anc 583 . 2 ((𝜑𝜓) → ∃𝑓(𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
7015ad2antrr 722 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐽 ∈ (TopOn‘𝑋))
71 toponuni 21971 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7270, 71syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑋 = 𝐽)
7372ineq1d 4142 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) = ( 𝐽 ran 𝑓))
74 topontop 21970 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7515, 74syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
7675ad2antrr 722 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐽 ∈ Top)
77 frn 6591 . . . . . 6 (𝑓:(𝐼𝑊)⟶𝐽 → ran 𝑓𝐽)
7877ad2antrl 724 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ran 𝑓𝐽)
794adantr 480 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝐼𝑊) ∈ Fin)
80 ffn 6584 . . . . . . . 8 (𝑓:(𝐼𝑊)⟶𝐽𝑓 Fn (𝐼𝑊))
8180ad2antrl 724 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑓 Fn (𝐼𝑊))
82 dffn4 6678 . . . . . . 7 (𝑓 Fn (𝐼𝑊) ↔ 𝑓:(𝐼𝑊)–onto→ran 𝑓)
8381, 82sylib 217 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑓:(𝐼𝑊)–onto→ran 𝑓)
84 fofi 9035 . . . . . 6 (((𝐼𝑊) ∈ Fin ∧ 𝑓:(𝐼𝑊)–onto→ran 𝑓) → ran 𝑓 ∈ Fin)
8579, 83, 84syl2anc 583 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ran 𝑓 ∈ Fin)
86 eqid 2738 . . . . . 6 𝐽 = 𝐽
8786rintopn 21966 . . . . 5 ((𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ran 𝑓 ∈ Fin) → ( 𝐽 ran 𝑓) ∈ 𝐽)
8876, 78, 85, 87syl3anc 1369 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ( 𝐽 ran 𝑓) ∈ 𝐽)
8973, 88eqeltrd 2839 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) ∈ 𝐽)
9012ad2antrr 722 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐷𝑋)
91 simpl 482 . . . . . . 7 ((𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → 𝐷 ∈ (𝑓𝑘))
9291ralimi 3086 . . . . . 6 (∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘))
9392ad2antll 725 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘))
94 eleq2 2827 . . . . . . 7 (𝑧 = (𝑓𝑘) → (𝐷𝑧𝐷 ∈ (𝑓𝑘)))
9594ralrn 6946 . . . . . 6 (𝑓 Fn (𝐼𝑊) → (∀𝑧 ∈ ran 𝑓 𝐷𝑧 ↔ ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘)))
9681, 95syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (∀𝑧 ∈ ran 𝑓 𝐷𝑧 ↔ ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘)))
9793, 96mpbird 256 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑧 ∈ ran 𝑓 𝐷𝑧)
98 elrint 4919 . . . 4 (𝐷 ∈ (𝑋 ran 𝑓) ↔ (𝐷𝑋 ∧ ∀𝑧 ∈ ran 𝑓 𝐷𝑧))
9990, 97, 98sylanbrc 582 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐷 ∈ (𝑋 ran 𝑓))
100 nfv 1918 . . . . . . . . . 10 𝑘 𝑓:(𝐼𝑊)⟶𝐽
1017, 100nfan 1903 . . . . . . . . 9 𝑘((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽)
102 funmpt 6456 . . . . . . . . . . . . 13 Fun (𝑥𝑋𝐴)
103 simp-4l 779 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝜑)
104103, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝐽 ∈ (TopOn‘𝑋))
105 simpllr 772 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑓:(𝐼𝑊)⟶𝐽)
106 simplr 765 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑘 ∈ (𝐼𝑊))
107105, 106ffvelrnd 6944 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ∈ 𝐽)
108 toponss 21984 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓𝑘) ∈ 𝐽) → (𝑓𝑘) ⊆ 𝑋)
109104, 107, 108syl2anc 583 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ⊆ 𝑋)
110106elin1d 4128 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑘𝐼)
111103, 110, 25syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
112 dmmptg 6134 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐴 (𝐹𝑘) → dom (𝑥𝑋𝐴) = 𝑋)
113111, 112syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → dom (𝑥𝑋𝐴) = 𝑋)
114109, 113sseqtrrd 3958 . . . . . . . . . . . . 13 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ⊆ dom (𝑥𝑋𝐴))
115 funimass4 6816 . . . . . . . . . . . . 13 ((Fun (𝑥𝑋𝐴) ∧ (𝑓𝑘) ⊆ dom (𝑥𝑋𝐴)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)))
116102, 114, 115sylancr 586 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)))
117 nffvmpt1 6767 . . . . . . . . . . . . . 14 𝑥((𝑥𝑋𝐴)‘𝑡)
118117nfel1 2922 . . . . . . . . . . . . 13 𝑥((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)
119 nfv 1918 . . . . . . . . . . . . 13 𝑡((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)
120 fveq2 6756 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝑥𝑋𝐴)‘𝑡) = ((𝑥𝑋𝐴)‘𝑥))
121120eleq1d 2823 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘) ↔ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
122118, 119, 121cbvralw 3363 . . . . . . . . . . . 12 (∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘))
123116, 122bitrdi 286 . . . . . . . . . . 11 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
124 inss1 4159 . . . . . . . . . . . . 13 (𝑋 ran 𝑓) ⊆ 𝑋
125 ssralv 3983 . . . . . . . . . . . . 13 ((𝑋 ran 𝑓) ⊆ 𝑋 → (∀𝑥𝑋 𝐴 (𝐹𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
126124, 111, 125mpsyl 68 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
127 inss2 4160 . . . . . . . . . . . . . 14 (𝑋 ran 𝑓) ⊆ ran 𝑓
128105, 80syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑓 Fn (𝐼𝑊))
129 fnfvelrn 6940 . . . . . . . . . . . . . . . 16 ((𝑓 Fn (𝐼𝑊) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝑓𝑘) ∈ ran 𝑓)
130128, 106, 129syl2anc 583 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ∈ ran 𝑓)
131 intss1 4891 . . . . . . . . . . . . . . 15 ((𝑓𝑘) ∈ ran 𝑓 ran 𝑓 ⊆ (𝑓𝑘))
132130, 131syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ran 𝑓 ⊆ (𝑓𝑘))
133127, 132sstrid 3928 . . . . . . . . . . . . 13 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑋 ran 𝑓) ⊆ (𝑓𝑘))
134 ssralv 3983 . . . . . . . . . . . . 13 ((𝑋 ran 𝑓) ⊆ (𝑓𝑘) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
135133, 134syl 17 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
136 r19.26 3094 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋 ran 𝑓)(𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) ↔ (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘) ∧ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
137 elinel1 4125 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑋 ran 𝑓) → 𝑥𝑋)
138137, 27sylan 579 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
139138eleq1d 2823 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → (((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) ↔ 𝐴 ∈ (𝐺𝑘)))
140139biimpd 228 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → (((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → 𝐴 ∈ (𝐺𝑘)))
141140expimpd 453 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋 ran 𝑓) → ((𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → 𝐴 ∈ (𝐺𝑘)))
142141ralimia 3084 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋 ran 𝑓)(𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
143136, 142sylbir 234 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘) ∧ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
144126, 135, 143syl6an 680 . . . . . . . . . . 11 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
145123, 144sylbid 239 . . . . . . . . . 10 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
146145expimpd 453 . . . . . . . . 9 ((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) → ((𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
147101, 146ralimdaa 3140 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) → (∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
148147impr 454 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
149 simpl 482 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝜑)
150 eldifi 4057 . . . . . . . . . . . 12 (𝑘 ∈ (𝐼𝑊) → 𝑘𝐼)
151137, 26sylan2 592 . . . . . . . . . . . . 13 (((𝜑𝑘𝐼) ∧ 𝑥 ∈ (𝑋 ran 𝑓)) → 𝐴 (𝐹𝑘))
152151ralrimiva 3107 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
153149, 150, 152syl2an 595 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
154 ptcnplem.5 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝐺𝑘) = (𝐹𝑘))
155 eleq2 2827 . . . . . . . . . . . . 13 ((𝐺𝑘) = (𝐹𝑘) → (𝐴 ∈ (𝐺𝑘) ↔ 𝐴 (𝐹𝑘)))
156155ralbidv 3120 . . . . . . . . . . . 12 ((𝐺𝑘) = (𝐹𝑘) → (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
157154, 156syl 17 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
158153, 157mpbird 256 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
159158ex 412 . . . . . . . . 9 ((𝜑𝜓) → (𝑘 ∈ (𝐼𝑊) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
1607, 159ralrimi 3139 . . . . . . . 8 ((𝜑𝜓) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
161160adantr 480 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
162 inundif 4409 . . . . . . . . 9 ((𝐼𝑊) ∪ (𝐼𝑊)) = 𝐼
163162raleqi 3337 . . . . . . . 8 (∀𝑘 ∈ ((𝐼𝑊) ∪ (𝐼𝑊))∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
164 ralunb 4121 . . . . . . . 8 (∀𝑘 ∈ ((𝐼𝑊) ∪ (𝐼𝑊))∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ (∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ∧ ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
165163, 164bitr3i 276 . . . . . . 7 (∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ (∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ∧ ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
166148, 161, 165sylanbrc 582 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
167 ralcom 3280 . . . . . 6 (∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘) ↔ ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
168166, 167sylibr 233 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘))
16932ad2antrr 722 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐼𝑉)
170 nffvmpt1 6767 . . . . . . . . 9 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡)
171170nfel1 2922 . . . . . . . 8 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)
172 nfv 1918 . . . . . . . 8 𝑡((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘)
173 fveq2 6756 . . . . . . . . 9 (𝑡 = 𝑥 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
174173eleq1d 2823 . . . . . . . 8 (𝑡 = 𝑥 → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘)))
175171, 172, 174cbvralw 3363 . . . . . . 7 (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘))
176 mptexg 7079 . . . . . . . . . . 11 (𝐼𝑉 → (𝑘𝐼𝐴) ∈ V)
177137, 176, 36syl2anr 596 . . . . . . . . . 10 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
178177eleq1d 2823 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘)))
179 mptelixpg 8681 . . . . . . . . . 10 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
180179adantr 480 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
181178, 180bitrd 278 . . . . . . . 8 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
182181ralbidva 3119 . . . . . . 7 (𝐼𝑉 → (∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
183175, 182syl5bb 282 . . . . . 6 (𝐼𝑉 → (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
184169, 183syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
185168, 184mpbird 256 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘))
186 funmpt 6456 . . . . 5 Fun (𝑥𝑋 ↦ (𝑘𝐼𝐴))
18732mptexd 7082 . . . . . . . . 9 (𝜑 → (𝑘𝐼𝐴) ∈ V)
188187ralrimivw 3108 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V)
189188ad2antrr 722 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V)
190 dmmptg 6134 . . . . . . 7 (∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V → dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = 𝑋)
191189, 190syl 17 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = 𝑋)
192124, 191sseqtrrid 3970 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) ⊆ dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)))
193 funimass4 6816 . . . . 5 ((Fun (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∧ (𝑋 ran 𝑓) ⊆ dom (𝑥𝑋 ↦ (𝑘𝐼𝐴))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)))
194186, 192, 193sylancr 586 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)))
195185, 194mpbird 256 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))
196 eleq2 2827 . . . . 5 (𝑧 = (𝑋 ran 𝑓) → (𝐷𝑧𝐷 ∈ (𝑋 ran 𝑓)))
197 imaeq2 5954 . . . . . 6 (𝑧 = (𝑋 ran 𝑓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)))
198197sseq1d 3948 . . . . 5 (𝑧 = (𝑋 ran 𝑓) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘)))
199196, 198anbi12d 630 . . . 4 (𝑧 = (𝑋 ran 𝑓) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)) ↔ (𝐷 ∈ (𝑋 ran 𝑓) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))))
200199rspcev 3552 . . 3 (((𝑋 ran 𝑓) ∈ 𝐽 ∧ (𝐷 ∈ (𝑋 ran 𝑓) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
20189, 99, 195, 200syl12anc 833 . 2 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
20269, 201exlimddv 1939 1 ((𝜑𝜓) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wnf 1787  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  cin 3882  wss 3883   cuni 4836   cint 4876  cmpt 5153  dom cdm 5580  ran crn 5581  cima 5583  Fun wfun 6412   Fn wfn 6413  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Xcixp 8643  Fincfn 8691  tcpt 17066  Topctop 21950  TopOnctopon 21967   CnP ccnp 22284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-fin 8695  df-top 21951  df-topon 21968  df-cnp 22287
This theorem is referenced by:  ptcnp  22681
  Copyright terms: Public domain W3C validator