MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptcnplem Structured version   Visualization version   GIF version

Theorem ptcnplem 23508
Description: Lemma for ptcnp 23509. (Contributed by Mario Carneiro, 3-Feb-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
ptcnp.2 𝐾 = (∏t𝐹)
ptcnp.3 (𝜑𝐽 ∈ (TopOn‘𝑋))
ptcnp.4 (𝜑𝐼𝑉)
ptcnp.5 (𝜑𝐹:𝐼⟶Top)
ptcnp.6 (𝜑𝐷𝑋)
ptcnp.7 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
ptcnplem.1 𝑘𝜓
ptcnplem.2 ((𝜑𝜓) → 𝐺 Fn 𝐼)
ptcnplem.3 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ (𝐹𝑘))
ptcnplem.4 ((𝜑𝜓) → 𝑊 ∈ Fin)
ptcnplem.5 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝐺𝑘) = (𝐹𝑘))
ptcnplem.6 ((𝜑𝜓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝐺𝑘))
Assertion
Ref Expression
ptcnplem ((𝜑𝜓) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
Distinct variable groups:   𝑧,𝐴   𝑥,𝑘,𝑧,𝐷   𝑘,𝐼,𝑥,𝑧   𝑥,𝐺,𝑧   𝑘,𝐽,𝑧   𝑧,𝐾   𝜑,𝑘,𝑥,𝑧   𝑘,𝐹,𝑥,𝑧   𝑘,𝑉,𝑥   𝑘,𝑊,𝑧   𝑘,𝑋,𝑥,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑧,𝑘)   𝐴(𝑥,𝑘)   𝐺(𝑘)   𝐽(𝑥)   𝐾(𝑥,𝑘)   𝑉(𝑧)   𝑊(𝑥)

Proof of Theorem ptcnplem
Dummy variables 𝑓 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ptcnplem.4 . . . 4 ((𝜑𝜓) → 𝑊 ∈ Fin)
2 inss2 4201 . . . 4 (𝐼𝑊) ⊆ 𝑊
3 ssfi 9137 . . . 4 ((𝑊 ∈ Fin ∧ (𝐼𝑊) ⊆ 𝑊) → (𝐼𝑊) ∈ Fin)
41, 2, 3sylancl 586 . . 3 ((𝜑𝜓) → (𝐼𝑊) ∈ Fin)
5 nfv 1914 . . . . 5 𝑘𝜑
6 ptcnplem.1 . . . . 5 𝑘𝜓
75, 6nfan 1899 . . . 4 𝑘(𝜑𝜓)
8 elinel1 4164 . . . . . 6 (𝑘 ∈ (𝐼𝑊) → 𝑘𝐼)
9 ptcnp.7 . . . . . . . 8 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
109adantlr 715 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷))
11 ptcnplem.3 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → (𝐺𝑘) ∈ (𝐹𝑘))
12 ptcnp.6 . . . . . . . . . . . 12 (𝜑𝐷𝑋)
1312adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → 𝐷𝑋)
14 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝑥𝑋)
15 ptcnp.3 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝐽 ∈ (TopOn‘𝑋))
1615adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐼) → 𝐽 ∈ (TopOn‘𝑋))
17 ptcnp.5 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐹:𝐼⟶Top)
1817ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ Top)
19 toptopon2 22805 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹𝑘) ∈ Top ↔ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
2018, 19sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘𝐼) → (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)))
21 cnpf2 23137 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹𝑘) ∈ (TopOn‘ (𝐹𝑘)) ∧ (𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷)) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
2216, 20, 9, 21syl3anc 1373 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐼) → (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
23 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2423fmpt 7082 . . . . . . . . . . . . . . . . . . 19 (∀𝑥𝑋 𝐴 (𝐹𝑘) ↔ (𝑥𝑋𝐴):𝑋 (𝐹𝑘))
2522, 24sylibr 234 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐼) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
2625r19.21bi 3229 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → 𝐴 (𝐹𝑘))
2723fvmpt2 6979 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝐴 (𝐹𝑘)) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2814, 26, 27syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑘𝐼) ∧ 𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
2928an32s 652 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝑋) ∧ 𝑘𝐼) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
3029mpteq2dva 5200 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = (𝑘𝐼𝐴))
31 simpr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → 𝑥𝑋)
32 ptcnp.4 . . . . . . . . . . . . . . . . 17 (𝜑𝐼𝑉)
3332adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝑋) → 𝐼𝑉)
3433mptexd 7198 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝑋) → (𝑘𝐼𝐴) ∈ V)
35 eqid 2729 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = (𝑥𝑋 ↦ (𝑘𝐼𝐴))
3635fvmpt2 6979 . . . . . . . . . . . . . . 15 ((𝑥𝑋 ∧ (𝑘𝐼𝐴) ∈ V) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
3731, 34, 36syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑𝑥𝑋) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
3830, 37eqtr4d 2767 . . . . . . . . . . . . 13 ((𝜑𝑥𝑋) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
3938ralrimiva 3125 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
4039adantr 480 . . . . . . . . . . 11 ((𝜑𝜓) → ∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
41 nfcv 2891 . . . . . . . . . . . . . 14 𝑥𝐼
42 nffvmpt1 6869 . . . . . . . . . . . . . 14 𝑥((𝑥𝑋𝐴)‘𝐷)
4341, 42nfmpt 5205 . . . . . . . . . . . . 13 𝑥(𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷))
44 nffvmpt1 6869 . . . . . . . . . . . . 13 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
4543, 44nfeq 2905 . . . . . . . . . . . 12 𝑥(𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)
46 fveq2 6858 . . . . . . . . . . . . . 14 (𝑥 = 𝐷 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝐷))
4746mpteq2dv 5201 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)))
48 fveq2 6858 . . . . . . . . . . . . 13 (𝑥 = 𝐷 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷))
4947, 48eqeq12d 2745 . . . . . . . . . . . 12 (𝑥 = 𝐷 → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ↔ (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)))
5045, 49rspc 3576 . . . . . . . . . . 11 (𝐷𝑋 → (∀𝑥𝑋 (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝑥)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷)))
5113, 40, 50sylc 65 . . . . . . . . . 10 ((𝜑𝜓) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷))
52 ptcnplem.6 . . . . . . . . . 10 ((𝜑𝜓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝐷) ∈ X𝑘𝐼 (𝐺𝑘))
5351, 52eqeltrd 2828 . . . . . . . . 9 ((𝜑𝜓) → (𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘))
5432adantr 480 . . . . . . . . . 10 ((𝜑𝜓) → 𝐼𝑉)
55 mptelixpg 8908 . . . . . . . . . 10 (𝐼𝑉 → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)))
5654, 55syl 17 . . . . . . . . 9 ((𝜑𝜓) → ((𝑘𝐼 ↦ ((𝑥𝑋𝐴)‘𝐷)) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)))
5753, 56mpbid 232 . . . . . . . 8 ((𝜑𝜓) → ∀𝑘𝐼 ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘))
5857r19.21bi 3229 . . . . . . 7 (((𝜑𝜓) ∧ 𝑘𝐼) → ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘))
59 cnpimaex 23143 . . . . . . 7 (((𝑥𝑋𝐴) ∈ ((𝐽 CnP (𝐹𝑘))‘𝐷) ∧ (𝐺𝑘) ∈ (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝐷) ∈ (𝐺𝑘)) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
6010, 11, 58, 59syl3anc 1373 . . . . . 6 (((𝜑𝜓) ∧ 𝑘𝐼) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
618, 60sylan2 593 . . . . 5 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
6261ex 412 . . . 4 ((𝜑𝜓) → (𝑘 ∈ (𝐼𝑊) → ∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘))))
637, 62ralrimi 3235 . . 3 ((𝜑𝜓) → ∀𝑘 ∈ (𝐼𝑊)∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)))
64 eleq2 2817 . . . . 5 (𝑢 = (𝑓𝑘) → (𝐷𝑢𝐷 ∈ (𝑓𝑘)))
65 imaeq2 6027 . . . . . 6 (𝑢 = (𝑓𝑘) → ((𝑥𝑋𝐴) “ 𝑢) = ((𝑥𝑋𝐴) “ (𝑓𝑘)))
6665sseq1d 3978 . . . . 5 (𝑢 = (𝑓𝑘) → (((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘) ↔ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))
6764, 66anbi12d 632 . . . 4 (𝑢 = (𝑓𝑘) → ((𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘)) ↔ (𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
6867ac6sfi 9231 . . 3 (((𝐼𝑊) ∈ Fin ∧ ∀𝑘 ∈ (𝐼𝑊)∃𝑢𝐽 (𝐷𝑢 ∧ ((𝑥𝑋𝐴) “ 𝑢) ⊆ (𝐺𝑘))) → ∃𝑓(𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
694, 63, 68syl2anc 584 . 2 ((𝜑𝜓) → ∃𝑓(𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘))))
7015ad2antrr 726 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐽 ∈ (TopOn‘𝑋))
71 toponuni 22801 . . . . . 6 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
7270, 71syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑋 = 𝐽)
7372ineq1d 4182 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) = ( 𝐽 ran 𝑓))
74 topontop 22800 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
7515, 74syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
7675ad2antrr 726 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐽 ∈ Top)
77 frn 6695 . . . . . 6 (𝑓:(𝐼𝑊)⟶𝐽 → ran 𝑓𝐽)
7877ad2antrl 728 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ran 𝑓𝐽)
794adantr 480 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝐼𝑊) ∈ Fin)
80 ffn 6688 . . . . . . . 8 (𝑓:(𝐼𝑊)⟶𝐽𝑓 Fn (𝐼𝑊))
8180ad2antrl 728 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑓 Fn (𝐼𝑊))
82 dffn4 6778 . . . . . . 7 (𝑓 Fn (𝐼𝑊) ↔ 𝑓:(𝐼𝑊)–onto→ran 𝑓)
8381, 82sylib 218 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝑓:(𝐼𝑊)–onto→ran 𝑓)
84 fofi 9262 . . . . . 6 (((𝐼𝑊) ∈ Fin ∧ 𝑓:(𝐼𝑊)–onto→ran 𝑓) → ran 𝑓 ∈ Fin)
8579, 83, 84syl2anc 584 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ran 𝑓 ∈ Fin)
86 eqid 2729 . . . . . 6 𝐽 = 𝐽
8786rintopn 22796 . . . . 5 ((𝐽 ∈ Top ∧ ran 𝑓𝐽 ∧ ran 𝑓 ∈ Fin) → ( 𝐽 ran 𝑓) ∈ 𝐽)
8876, 78, 85, 87syl3anc 1373 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ( 𝐽 ran 𝑓) ∈ 𝐽)
8973, 88eqeltrd 2828 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) ∈ 𝐽)
9012ad2antrr 726 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐷𝑋)
91 simpl 482 . . . . . . 7 ((𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → 𝐷 ∈ (𝑓𝑘))
9291ralimi 3066 . . . . . 6 (∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘))
9392ad2antll 729 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘))
94 eleq2 2817 . . . . . . 7 (𝑧 = (𝑓𝑘) → (𝐷𝑧𝐷 ∈ (𝑓𝑘)))
9594ralrn 7060 . . . . . 6 (𝑓 Fn (𝐼𝑊) → (∀𝑧 ∈ ran 𝑓 𝐷𝑧 ↔ ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘)))
9681, 95syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (∀𝑧 ∈ ran 𝑓 𝐷𝑧 ↔ ∀𝑘 ∈ (𝐼𝑊)𝐷 ∈ (𝑓𝑘)))
9793, 96mpbird 257 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑧 ∈ ran 𝑓 𝐷𝑧)
98 elrint 4953 . . . 4 (𝐷 ∈ (𝑋 ran 𝑓) ↔ (𝐷𝑋 ∧ ∀𝑧 ∈ ran 𝑓 𝐷𝑧))
9990, 97, 98sylanbrc 583 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐷 ∈ (𝑋 ran 𝑓))
100 nfv 1914 . . . . . . . . . 10 𝑘 𝑓:(𝐼𝑊)⟶𝐽
1017, 100nfan 1899 . . . . . . . . 9 𝑘((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽)
102 funmpt 6554 . . . . . . . . . . . . 13 Fun (𝑥𝑋𝐴)
103 simp-4l 782 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝜑)
104103, 15syl 17 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝐽 ∈ (TopOn‘𝑋))
105 simpllr 775 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑓:(𝐼𝑊)⟶𝐽)
106 simplr 768 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑘 ∈ (𝐼𝑊))
107105, 106ffvelcdmd 7057 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ∈ 𝐽)
108 toponss 22814 . . . . . . . . . . . . . . 15 ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓𝑘) ∈ 𝐽) → (𝑓𝑘) ⊆ 𝑋)
109104, 107, 108syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ⊆ 𝑋)
110106elin1d 4167 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑘𝐼)
111103, 110, 25syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ∀𝑥𝑋 𝐴 (𝐹𝑘))
112 dmmptg 6215 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 𝐴 (𝐹𝑘) → dom (𝑥𝑋𝐴) = 𝑋)
113111, 112syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → dom (𝑥𝑋𝐴) = 𝑋)
114109, 113sseqtrrd 3984 . . . . . . . . . . . . 13 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ⊆ dom (𝑥𝑋𝐴))
115 funimass4 6925 . . . . . . . . . . . . 13 ((Fun (𝑥𝑋𝐴) ∧ (𝑓𝑘) ⊆ dom (𝑥𝑋𝐴)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)))
116102, 114, 115sylancr 587 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)))
117 nffvmpt1 6869 . . . . . . . . . . . . . 14 𝑥((𝑥𝑋𝐴)‘𝑡)
118117nfel1 2908 . . . . . . . . . . . . 13 𝑥((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘)
119 nfv 1914 . . . . . . . . . . . . 13 𝑡((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)
120 fveq2 6858 . . . . . . . . . . . . . 14 (𝑡 = 𝑥 → ((𝑥𝑋𝐴)‘𝑡) = ((𝑥𝑋𝐴)‘𝑥))
121120eleq1d 2813 . . . . . . . . . . . . 13 (𝑡 = 𝑥 → (((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘) ↔ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
122118, 119, 121cbvralw 3280 . . . . . . . . . . . 12 (∀𝑡 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑡) ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘))
123116, 122bitrdi 287 . . . . . . . . . . 11 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
124 inss1 4200 . . . . . . . . . . . . 13 (𝑋 ran 𝑓) ⊆ 𝑋
125 ssralv 4015 . . . . . . . . . . . . 13 ((𝑋 ran 𝑓) ⊆ 𝑋 → (∀𝑥𝑋 𝐴 (𝐹𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
126124, 111, 125mpsyl 68 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
127 inss2 4201 . . . . . . . . . . . . . 14 (𝑋 ran 𝑓) ⊆ ran 𝑓
128105, 80syl 17 . . . . . . . . . . . . . . . 16 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → 𝑓 Fn (𝐼𝑊))
129 fnfvelrn 7052 . . . . . . . . . . . . . . . 16 ((𝑓 Fn (𝐼𝑊) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝑓𝑘) ∈ ran 𝑓)
130128, 106, 129syl2anc 584 . . . . . . . . . . . . . . 15 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑓𝑘) ∈ ran 𝑓)
131 intss1 4927 . . . . . . . . . . . . . . 15 ((𝑓𝑘) ∈ ran 𝑓 ran 𝑓 ⊆ (𝑓𝑘))
132130, 131syl 17 . . . . . . . . . . . . . 14 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → ran 𝑓 ⊆ (𝑓𝑘))
133127, 132sstrid 3958 . . . . . . . . . . . . 13 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (𝑋 ran 𝑓) ⊆ (𝑓𝑘))
134 ssralv 4015 . . . . . . . . . . . . 13 ((𝑋 ran 𝑓) ⊆ (𝑓𝑘) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
135133, 134syl 17 . . . . . . . . . . . 12 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
136 r19.26 3091 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋 ran 𝑓)(𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) ↔ (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘) ∧ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)))
137 elinel1 4164 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (𝑋 ran 𝑓) → 𝑥𝑋)
138137, 27sylan 580 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
139138eleq1d 2813 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → (((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) ↔ 𝐴 ∈ (𝐺𝑘)))
140139biimpd 229 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝑋 ran 𝑓) ∧ 𝐴 (𝐹𝑘)) → (((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → 𝐴 ∈ (𝐺𝑘)))
141140expimpd 453 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑋 ran 𝑓) → ((𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → 𝐴 ∈ (𝐺𝑘)))
142141ralimia 3063 . . . . . . . . . . . . 13 (∀𝑥 ∈ (𝑋 ran 𝑓)(𝐴 (𝐹𝑘) ∧ ((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
143136, 142sylbir 235 . . . . . . . . . . . 12 ((∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘) ∧ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
144126, 135, 143syl6an 684 . . . . . . . . . . 11 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (∀𝑥 ∈ (𝑓𝑘)((𝑥𝑋𝐴)‘𝑥) ∈ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
145123, 144sylbid 240 . . . . . . . . . 10 (((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) ∧ 𝐷 ∈ (𝑓𝑘)) → (((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
146145expimpd 453 . . . . . . . . 9 ((((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼𝑊)) → ((𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
147101, 146ralimdaa 3238 . . . . . . . 8 (((𝜑𝜓) ∧ 𝑓:(𝐼𝑊)⟶𝐽) → (∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
148147impr 454 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
149 simpl 482 . . . . . . . . . . . 12 ((𝜑𝜓) → 𝜑)
150 eldifi 4094 . . . . . . . . . . . 12 (𝑘 ∈ (𝐼𝑊) → 𝑘𝐼)
151137, 26sylan2 593 . . . . . . . . . . . . 13 (((𝜑𝑘𝐼) ∧ 𝑥 ∈ (𝑋 ran 𝑓)) → 𝐴 (𝐹𝑘))
152151ralrimiva 3125 . . . . . . . . . . . 12 ((𝜑𝑘𝐼) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
153149, 150, 152syl2an 596 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘))
154 ptcnplem.5 . . . . . . . . . . . 12 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (𝐺𝑘) = (𝐹𝑘))
155 eleq2 2817 . . . . . . . . . . . . 13 ((𝐺𝑘) = (𝐹𝑘) → (𝐴 ∈ (𝐺𝑘) ↔ 𝐴 (𝐹𝑘)))
156155ralbidv 3156 . . . . . . . . . . . 12 ((𝐺𝑘) = (𝐹𝑘) → (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
157154, 156syl 17 . . . . . . . . . . 11 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → (∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 (𝐹𝑘)))
158153, 157mpbird 257 . . . . . . . . . 10 (((𝜑𝜓) ∧ 𝑘 ∈ (𝐼𝑊)) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
159158ex 412 . . . . . . . . 9 ((𝜑𝜓) → (𝑘 ∈ (𝐼𝑊) → ∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
1607, 159ralrimi 3235 . . . . . . . 8 ((𝜑𝜓) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
161160adantr 480 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
162 inundif 4442 . . . . . . . . 9 ((𝐼𝑊) ∪ (𝐼𝑊)) = 𝐼
163162raleqi 3297 . . . . . . . 8 (∀𝑘 ∈ ((𝐼𝑊) ∪ (𝐼𝑊))∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
164 ralunb 4160 . . . . . . . 8 (∀𝑘 ∈ ((𝐼𝑊) ∪ (𝐼𝑊))∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ (∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ∧ ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
165163, 164bitr3i 277 . . . . . . 7 (∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ↔ (∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘) ∧ ∀𝑘 ∈ (𝐼𝑊)∀𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘)))
166148, 161, 165sylanbrc 583 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
167 ralcom 3265 . . . . . 6 (∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘) ↔ ∀𝑘𝐼𝑥 ∈ (𝑋 ran 𝑓)𝐴 ∈ (𝐺𝑘))
168166, 167sylibr 234 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘))
16932ad2antrr 726 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → 𝐼𝑉)
170 nffvmpt1 6869 . . . . . . . . 9 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡)
171170nfel1 2908 . . . . . . . 8 𝑥((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)
172 nfv 1914 . . . . . . . 8 𝑡((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘)
173 fveq2 6858 . . . . . . . . 9 (𝑡 = 𝑥 → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥))
174173eleq1d 2813 . . . . . . . 8 (𝑡 = 𝑥 → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘)))
175171, 172, 174cbvralw 3280 . . . . . . 7 (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘))
176 mptexg 7195 . . . . . . . . . . 11 (𝐼𝑉 → (𝑘𝐼𝐴) ∈ V)
177137, 176, 36syl2anr 597 . . . . . . . . . 10 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) = (𝑘𝐼𝐴))
178177eleq1d 2813 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ (𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘)))
179 mptelixpg 8908 . . . . . . . . . 10 (𝐼𝑉 → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
180179adantr 480 . . . . . . . . 9 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → ((𝑘𝐼𝐴) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
181178, 180bitrd 279 . . . . . . . 8 ((𝐼𝑉𝑥 ∈ (𝑋 ran 𝑓)) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
182181ralbidva 3154 . . . . . . 7 (𝐼𝑉 → (∀𝑥 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑥) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
183175, 182bitrid 283 . . . . . 6 (𝐼𝑉 → (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
184169, 183syl 17 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑥 ∈ (𝑋 ran 𝑓)∀𝑘𝐼 𝐴 ∈ (𝐺𝑘)))
185168, 184mpbird 257 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘))
186 funmpt 6554 . . . . 5 Fun (𝑥𝑋 ↦ (𝑘𝐼𝐴))
18732mptexd 7198 . . . . . . . . 9 (𝜑 → (𝑘𝐼𝐴) ∈ V)
188187ralrimivw 3129 . . . . . . . 8 (𝜑 → ∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V)
189188ad2antrr 726 . . . . . . 7 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V)
190 dmmptg 6215 . . . . . . 7 (∀𝑥𝑋 (𝑘𝐼𝐴) ∈ V → dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = 𝑋)
191189, 190syl 17 . . . . . 6 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)) = 𝑋)
192124, 191sseqtrrid 3990 . . . . 5 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (𝑋 ran 𝑓) ⊆ dom (𝑥𝑋 ↦ (𝑘𝐼𝐴)))
193 funimass4 6925 . . . . 5 ((Fun (𝑥𝑋 ↦ (𝑘𝐼𝐴)) ∧ (𝑋 ran 𝑓) ⊆ dom (𝑥𝑋 ↦ (𝑘𝐼𝐴))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)))
194186, 192, 193sylancr 587 . . . 4 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ∀𝑡 ∈ (𝑋 ran 𝑓)((𝑥𝑋 ↦ (𝑘𝐼𝐴))‘𝑡) ∈ X𝑘𝐼 (𝐺𝑘)))
195185, 194mpbird 257 . . 3 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))
196 eleq2 2817 . . . . 5 (𝑧 = (𝑋 ran 𝑓) → (𝐷𝑧𝐷 ∈ (𝑋 ran 𝑓)))
197 imaeq2 6027 . . . . . 6 (𝑧 = (𝑋 ran 𝑓) → ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) = ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)))
198197sseq1d 3978 . . . . 5 (𝑧 = (𝑋 ran 𝑓) → (((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘) ↔ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘)))
199196, 198anbi12d 632 . . . 4 (𝑧 = (𝑋 ran 𝑓) → ((𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)) ↔ (𝐷 ∈ (𝑋 ran 𝑓) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))))
200199rspcev 3588 . . 3 (((𝑋 ran 𝑓) ∈ 𝐽 ∧ (𝐷 ∈ (𝑋 ran 𝑓) ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ (𝑋 ran 𝑓)) ⊆ X𝑘𝐼 (𝐺𝑘))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
20189, 99, 195, 200syl12anc 836 . 2 (((𝜑𝜓) ∧ (𝑓:(𝐼𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼𝑊)(𝐷 ∈ (𝑓𝑘) ∧ ((𝑥𝑋𝐴) “ (𝑓𝑘)) ⊆ (𝐺𝑘)))) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
20269, 201exlimddv 1935 1 ((𝜑𝜓) → ∃𝑧𝐽 (𝐷𝑧 ∧ ((𝑥𝑋 ↦ (𝑘𝐼𝐴)) “ 𝑧) ⊆ X𝑘𝐼 (𝐺𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wnf 1783  wcel 2109  wral 3044  wrex 3053  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914   cuni 4871   cint 4910  cmpt 5188  dom cdm 5638  ran crn 5639  cima 5641  Fun wfun 6505   Fn wfn 6506  wf 6507  ontowfo 6509  cfv 6511  (class class class)co 7387  Xcixp 8870  Fincfn 8918  tcpt 17401  Topctop 22780  TopOnctopon 22797   CnP ccnp 23112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-2o 8435  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-fin 8922  df-top 22781  df-topon 22798  df-cnp 23115
This theorem is referenced by:  ptcnp  23509
  Copyright terms: Public domain W3C validator