Step | Hyp | Ref
| Expression |
1 | | ptcnplem.4 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ Fin) |
2 | | inss2 4160 |
. . . 4
⊢ (𝐼 ∩ 𝑊) ⊆ 𝑊 |
3 | | ssfi 8918 |
. . . 4
⊢ ((𝑊 ∈ Fin ∧ (𝐼 ∩ 𝑊) ⊆ 𝑊) → (𝐼 ∩ 𝑊) ∈ Fin) |
4 | 1, 2, 3 | sylancl 585 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐼 ∩ 𝑊) ∈ Fin) |
5 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
6 | | ptcnplem.1 |
. . . . 5
⊢
Ⅎ𝑘𝜓 |
7 | 5, 6 | nfan 1903 |
. . . 4
⊢
Ⅎ𝑘(𝜑 ∧ 𝜓) |
8 | | elinel1 4125 |
. . . . . 6
⊢ (𝑘 ∈ (𝐼 ∩ 𝑊) → 𝑘 ∈ 𝐼) |
9 | | ptcnp.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) |
10 | 9 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) |
11 | | ptcnplem.3 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ (𝐹‘𝑘)) |
12 | | ptcnp.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ 𝑋) |
14 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
15 | | ptcnp.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
16 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐽 ∈ (TopOn‘𝑋)) |
17 | | ptcnp.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:𝐼⟶Top) |
18 | 17 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ Top) |
19 | | toptopon2 21975 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑘) ∈ Top ↔ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
20 | 18, 19 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
21 | | cnpf2 22309 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
22 | 16, 20, 9, 21 | syl3anc 1369 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
23 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
24 | 23 | fmpt 6966 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
25 | 22, 24 | sylibr 233 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘)) |
26 | 25 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
27 | 23 | fvmpt2 6868 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
28 | 14, 26, 27 | syl2anc 583 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
29 | 28 | an32s 648 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
30 | 29 | mpteq2dva 5170 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
31 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
32 | | ptcnp.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
34 | 33 | mptexd 7082 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
35 | | eqid 2738 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) |
36 | 35 | fvmpt2 6868 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
37 | 31, 34, 36 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
38 | 30, 37 | eqtr4d 2781 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
39 | 38 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
41 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝐼 |
42 | | nffvmpt1 6767 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) |
43 | 41, 42 | nfmpt 5177 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
44 | | nffvmpt1 6767 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) |
45 | 43, 44 | nfeq 2919 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) |
46 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
47 | 46 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐷 → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷))) |
48 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷)) |
49 | 47, 48 | eqeq12d 2754 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷))) |
50 | 45, 49 | rspc 3539 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷))) |
51 | 13, 40, 50 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷)) |
52 | | ptcnplem.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
53 | 51, 52 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
54 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ∈ 𝑉) |
55 | | mptelixpg 8681 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘))) |
56 | 54, 55 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘))) |
57 | 53, 56 | mpbid 231 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) |
58 | 57 | r19.21bi 3132 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) |
59 | | cnpimaex 22315 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷) ∧ (𝐺‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
60 | 10, 11, 58, 59 | syl3anc 1369 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
61 | 8, 60 | sylan2 592 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
62 | 61 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ (𝐼 ∩ 𝑊) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘)))) |
63 | 7, 62 | ralrimi 3139 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
64 | | eleq2 2827 |
. . . . 5
⊢ (𝑢 = (𝑓‘𝑘) → (𝐷 ∈ 𝑢 ↔ 𝐷 ∈ (𝑓‘𝑘))) |
65 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑢 = (𝑓‘𝑘) → ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) = ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘))) |
66 | 65 | sseq1d 3948 |
. . . . 5
⊢ (𝑢 = (𝑓‘𝑘) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘))) |
67 | 64, 66 | anbi12d 630 |
. . . 4
⊢ (𝑢 = (𝑓‘𝑘) → ((𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘)) ↔ (𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
68 | 67 | ac6sfi 8988 |
. . 3
⊢ (((𝐼 ∩ 𝑊) ∈ Fin ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) → ∃𝑓(𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
69 | 4, 63, 68 | syl2anc 583 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ∃𝑓(𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
70 | 15 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐽 ∈ (TopOn‘𝑋)) |
71 | | toponuni 21971 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
72 | 70, 71 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑋 = ∪ 𝐽) |
73 | 72 | ineq1d 4142 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) = (∪ 𝐽
∩ ∩ ran 𝑓)) |
74 | | topontop 21970 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
75 | 15, 74 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
76 | 75 | ad2antrr 722 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐽 ∈ Top) |
77 | | frn 6591 |
. . . . . 6
⊢ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 → ran 𝑓 ⊆ 𝐽) |
78 | 77 | ad2antrl 724 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ran 𝑓 ⊆ 𝐽) |
79 | 4 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝐼 ∩ 𝑊) ∈ Fin) |
80 | | ffn 6584 |
. . . . . . . 8
⊢ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 → 𝑓 Fn (𝐼 ∩ 𝑊)) |
81 | 80 | ad2antrl 724 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑓 Fn (𝐼 ∩ 𝑊)) |
82 | | dffn4 6678 |
. . . . . . 7
⊢ (𝑓 Fn (𝐼 ∩ 𝑊) ↔ 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) |
83 | 81, 82 | sylib 217 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) |
84 | | fofi 9035 |
. . . . . 6
⊢ (((𝐼 ∩ 𝑊) ∈ Fin ∧ 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
85 | 79, 83, 84 | syl2anc 583 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ran 𝑓 ∈ Fin) |
86 | | eqid 2738 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
87 | 86 | rintopn 21966 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ∈ Fin) → (∪ 𝐽
∩ ∩ ran 𝑓) ∈ 𝐽) |
88 | 76, 78, 85, 87 | syl3anc 1369 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∪
𝐽 ∩ ∩ ran 𝑓) ∈ 𝐽) |
89 | 73, 88 | eqeltrd 2839 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) ∈ 𝐽) |
90 | 12 | ad2antrr 722 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐷 ∈ 𝑋) |
91 | | simpl 482 |
. . . . . . 7
⊢ ((𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → 𝐷 ∈ (𝑓‘𝑘)) |
92 | 91 | ralimi 3086 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘)) |
93 | 92 | ad2antll 725 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘)) |
94 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑧 = (𝑓‘𝑘) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑓‘𝑘))) |
95 | 94 | ralrn 6946 |
. . . . . 6
⊢ (𝑓 Fn (𝐼 ∩ 𝑊) → (∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘))) |
96 | 81, 95 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘))) |
97 | 93, 96 | mpbird 256 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧) |
98 | | elrint 4919 |
. . . 4
⊢ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ↔ (𝐷 ∈ 𝑋 ∧ ∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧)) |
99 | 90, 97, 98 | sylanbrc 582 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓)) |
100 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑓:(𝐼 ∩ 𝑊)⟶𝐽 |
101 | 7, 100 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) |
102 | | funmpt 6456 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) |
103 | | simp-4l 779 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝜑) |
104 | 103, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝐽 ∈ (TopOn‘𝑋)) |
105 | | simpllr 772 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) |
106 | | simplr 765 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑘 ∈ (𝐼 ∩ 𝑊)) |
107 | 105, 106 | ffvelrnd 6944 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ∈ 𝐽) |
108 | | toponss 21984 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘𝑘) ∈ 𝐽) → (𝑓‘𝑘) ⊆ 𝑋) |
109 | 104, 107,
108 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ⊆ 𝑋) |
110 | 106 | elin1d 4128 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑘 ∈ 𝐼) |
111 | 103, 110,
25 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘)) |
112 | | dmmptg 6134 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
114 | 109, 113 | sseqtrrd 3958 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
115 | | funimass4 6816 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) ∧ (𝑓‘𝑘) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘))) |
116 | 102, 114,
115 | sylancr 586 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘))) |
117 | | nffvmpt1 6767 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) |
118 | 117 | nfel1 2922 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) |
119 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) |
120 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) |
121 | 120 | eleq1d 2823 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
122 | 118, 119,
121 | cbvralw 3363 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
(𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) |
123 | 116, 122 | bitrdi 286 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
124 | | inss1 4159 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∩ ∩ ran 𝑓) ⊆ 𝑋 |
125 | | ssralv 3983 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∩ ∩ ran 𝑓) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
126 | 124, 111,
125 | mpsyl 68 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
127 | | inss2 4160 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ ∩ ran 𝑓) ⊆ ∩ ran
𝑓 |
128 | 105, 80 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑓 Fn (𝐼 ∩ 𝑊)) |
129 | | fnfvelrn 6940 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 Fn (𝐼 ∩ 𝑊) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → (𝑓‘𝑘) ∈ ran 𝑓) |
130 | 128, 106,
129 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ∈ ran 𝑓) |
131 | | intss1 4891 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑘) ∈ ran 𝑓 → ∩ ran
𝑓 ⊆ (𝑓‘𝑘)) |
132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∩ ran
𝑓 ⊆ (𝑓‘𝑘)) |
133 | 127, 132 | sstrid 3928 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑋 ∩ ∩ ran
𝑓) ⊆ (𝑓‘𝑘)) |
134 | | ssralv 3983 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∩ ∩ ran 𝑓) ⊆ (𝑓‘𝑘) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
135 | 133, 134 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
136 | | r19.26 3094 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)(𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) ↔ (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
137 | | elinel1 4125 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) → 𝑥 ∈ 𝑋) |
138 | 137, 27 | sylan 579 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
139 | 138 | eleq1d 2823 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) ↔ 𝐴 ∈ (𝐺‘𝑘))) |
140 | 139 | biimpd 228 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → 𝐴 ∈ (𝐺‘𝑘))) |
141 | 140 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) → ((𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → 𝐴 ∈ (𝐺‘𝑘))) |
142 | 141 | ralimia 3084 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)(𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
143 | 136, 142 | sylbir 234 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
144 | 126, 135,
143 | syl6an 680 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
145 | 123, 144 | sylbid 239 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
146 | 145 | expimpd 453 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → ((𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
147 | 101, 146 | ralimdaa 3140 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) → (∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
148 | 147 | impr 454 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
149 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
150 | | eldifi 4057 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐼 ∖ 𝑊) → 𝑘 ∈ 𝐼) |
151 | 137, 26 | sylan2 592 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
152 | 151 | ralrimiva 3107 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
153 | 149, 150,
152 | syl2an 595 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
154 | | ptcnplem.5 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (𝐺‘𝑘) = ∪ (𝐹‘𝑘)) |
155 | | eleq2 2827 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑘) = ∪ (𝐹‘𝑘) → (𝐴 ∈ (𝐺‘𝑘) ↔ 𝐴 ∈ ∪ (𝐹‘𝑘))) |
156 | 155 | ralbidv 3120 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑘) = ∪ (𝐹‘𝑘) → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
157 | 154, 156 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
158 | 153, 157 | mpbird 256 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
159 | 158 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ (𝐼 ∖ 𝑊) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
160 | 7, 159 | ralrimi 3139 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
161 | 160 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
162 | | inundif 4409 |
. . . . . . . . 9
⊢ ((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊)) = 𝐼 |
163 | 162 | raleqi 3337 |
. . . . . . . 8
⊢
(∀𝑘 ∈
((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊))∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
164 | | ralunb 4121 |
. . . . . . . 8
⊢
(∀𝑘 ∈
((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊))∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ (∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ∧ ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
165 | 163, 164 | bitr3i 276 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ (∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ∧ ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
166 | 148, 161,
165 | sylanbrc 582 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
167 | | ralcom 3280 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
168 | 166, 167 | sylibr 233 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘)) |
169 | 32 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐼 ∈ 𝑉) |
170 | | nffvmpt1 6767 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) |
171 | 170 | nfel1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) |
172 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) |
173 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑡 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
174 | 173 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑡 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
175 | 171, 172,
174 | cbvralw 3363 |
. . . . . . 7
⊢
(∀𝑡 ∈
(𝑋 ∩ ∩ ran 𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
176 | | mptexg 7079 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
177 | 137, 176,
36 | syl2anr 596 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
178 | 177 | eleq1d 2823 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
179 | | mptelixpg 8681 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
180 | 179 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
181 | 178, 180 | bitrd 278 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
182 | 181 | ralbidva 3119 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
183 | 175, 182 | syl5bb 282 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
184 | 169, 183 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
185 | 168, 184 | mpbird 256 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
186 | | funmpt 6456 |
. . . . 5
⊢ Fun
(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) |
187 | 32 | mptexd 7082 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
188 | 187 | ralrimivw 3108 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
189 | 188 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
190 | | dmmptg 6134 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V → dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = 𝑋) |
191 | 189, 190 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = 𝑋) |
192 | 124, 191 | sseqtrrid 3970 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) ⊆ dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))) |
193 | | funimass4 6816 |
. . . . 5
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∧ (𝑋 ∩ ∩ ran
𝑓) ⊆ dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
194 | 186, 192,
193 | sylancr 586 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
195 | 185, 194 | mpbird 256 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘)) |
196 | | eleq2 2827 |
. . . . 5
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓))) |
197 | | imaeq2 5954 |
. . . . . 6
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓))) |
198 | 197 | sseq1d 3948 |
. . . . 5
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘))) |
199 | 196, 198 | anbi12d 630 |
. . . 4
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) ↔ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘)))) |
200 | 199 | rspcev 3552 |
. . 3
⊢ (((𝑋 ∩ ∩ ran 𝑓) ∈ 𝐽 ∧ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
201 | 89, 99, 195, 200 | syl12anc 833 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
202 | 69, 201 | exlimddv 1939 |
1
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |