| Step | Hyp | Ref
| Expression |
| 1 | | ptcnplem.4 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝑊 ∈ Fin) |
| 2 | | inss2 4218 |
. . . 4
⊢ (𝐼 ∩ 𝑊) ⊆ 𝑊 |
| 3 | | ssfi 9192 |
. . . 4
⊢ ((𝑊 ∈ Fin ∧ (𝐼 ∩ 𝑊) ⊆ 𝑊) → (𝐼 ∩ 𝑊) ∈ Fin) |
| 4 | 1, 2, 3 | sylancl 586 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → (𝐼 ∩ 𝑊) ∈ Fin) |
| 5 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
| 6 | | ptcnplem.1 |
. . . . 5
⊢
Ⅎ𝑘𝜓 |
| 7 | 5, 6 | nfan 1899 |
. . . 4
⊢
Ⅎ𝑘(𝜑 ∧ 𝜓) |
| 8 | | elinel1 4181 |
. . . . . 6
⊢ (𝑘 ∈ (𝐼 ∩ 𝑊) → 𝑘 ∈ 𝐼) |
| 9 | | ptcnp.7 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) |
| 10 | 9 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) |
| 11 | | ptcnplem.3 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → (𝐺‘𝑘) ∈ (𝐹‘𝑘)) |
| 12 | | ptcnp.6 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ 𝑋) |
| 13 | 12 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → 𝐷 ∈ 𝑋) |
| 14 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 15 | | ptcnp.3 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → 𝐽 ∈ (TopOn‘𝑋)) |
| 17 | | ptcnp.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜑 → 𝐹:𝐼⟶Top) |
| 18 | 17 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ Top) |
| 19 | | toptopon2 22861 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑘) ∈ Top ↔ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
| 20 | 18, 19 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘))) |
| 21 | | cnpf2 23193 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝐹‘𝑘) ∈ (TopOn‘∪ (𝐹‘𝑘)) ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷)) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
| 22 | 16, 20, 9, 21 | syl3anc 1373 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
| 23 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
| 24 | 23 | fmpt 7105 |
. . . . . . . . . . . . . . . . . . 19
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶∪ (𝐹‘𝑘)) |
| 25 | 22, 24 | sylibr 234 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 26 | 25 | r19.21bi 3238 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 27 | 23 | fvmpt2 7002 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 28 | 14, 26, 27 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 29 | 28 | an32s 652 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 30 | 29 | mpteq2dva 5219 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 31 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 32 | | ptcnp.4 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 33 | 32 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐼 ∈ 𝑉) |
| 34 | 33 | mptexd 7221 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
| 35 | | eqid 2736 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 36 | 35 | fvmpt2 7002 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑋 ∧ (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 37 | 31, 34, 36 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 38 | 30, 37 | eqtr4d 2774 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
| 39 | 38 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
| 40 | 39 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝜓) → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
| 41 | | nfcv 2899 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥𝐼 |
| 42 | | nffvmpt1 6892 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) |
| 43 | 41, 42 | nfmpt 5224 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
| 44 | | nffvmpt1 6892 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) |
| 45 | 43, 44 | nfeq 2913 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑥(𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) |
| 46 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) |
| 47 | 46 | mpteq2dv 5220 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐷 → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷))) |
| 48 | | fveq2 6881 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝐷 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷)) |
| 49 | 47, 48 | eqeq12d 2752 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐷 → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ↔ (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷))) |
| 50 | 45, 49 | rspc 3594 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷))) |
| 51 | 13, 40, 50 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷)) |
| 52 | | ptcnplem.6 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝐷) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
| 53 | 51, 52 | eqeltrd 2835 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
| 54 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝜓) → 𝐼 ∈ 𝑉) |
| 55 | | mptelixpg 8954 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘))) |
| 56 | 54, 55 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → ((𝑘 ∈ 𝐼 ↦ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷)) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘))) |
| 57 | 53, 56 | mpbid 232 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ 𝐼 ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) |
| 58 | 57 | r19.21bi 3238 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) |
| 59 | | cnpimaex 23199 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ ((𝐽 CnP (𝐹‘𝑘))‘𝐷) ∧ (𝐺‘𝑘) ∈ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝐷) ∈ (𝐺‘𝑘)) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
| 60 | 10, 11, 58, 59 | syl3anc 1373 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ 𝐼) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
| 61 | 8, 60 | sylan2 593 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
| 62 | 61 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ (𝐼 ∩ 𝑊) → ∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘)))) |
| 63 | 7, 62 | ralrimi 3244 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) |
| 64 | | eleq2 2824 |
. . . . 5
⊢ (𝑢 = (𝑓‘𝑘) → (𝐷 ∈ 𝑢 ↔ 𝐷 ∈ (𝑓‘𝑘))) |
| 65 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑢 = (𝑓‘𝑘) → ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) = ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘))) |
| 66 | 65 | sseq1d 3995 |
. . . . 5
⊢ (𝑢 = (𝑓‘𝑘) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘))) |
| 67 | 64, 66 | anbi12d 632 |
. . . 4
⊢ (𝑢 = (𝑓‘𝑘) → ((𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘)) ↔ (𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
| 68 | 67 | ac6sfi 9297 |
. . 3
⊢ (((𝐼 ∩ 𝑊) ∈ Fin ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)∃𝑢 ∈ 𝐽 (𝐷 ∈ 𝑢 ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ 𝑢) ⊆ (𝐺‘𝑘))) → ∃𝑓(𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
| 69 | 4, 63, 68 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ 𝜓) → ∃𝑓(𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) |
| 70 | 15 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐽 ∈ (TopOn‘𝑋)) |
| 71 | | toponuni 22857 |
. . . . . 6
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = ∪ 𝐽) |
| 72 | 70, 71 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑋 = ∪ 𝐽) |
| 73 | 72 | ineq1d 4199 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) = (∪ 𝐽
∩ ∩ ran 𝑓)) |
| 74 | | topontop 22856 |
. . . . . . 7
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top) |
| 75 | 15, 74 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
| 76 | 75 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐽 ∈ Top) |
| 77 | | frn 6718 |
. . . . . 6
⊢ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 → ran 𝑓 ⊆ 𝐽) |
| 78 | 77 | ad2antrl 728 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ran 𝑓 ⊆ 𝐽) |
| 79 | 4 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝐼 ∩ 𝑊) ∈ Fin) |
| 80 | | ffn 6711 |
. . . . . . . 8
⊢ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 → 𝑓 Fn (𝐼 ∩ 𝑊)) |
| 81 | 80 | ad2antrl 728 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑓 Fn (𝐼 ∩ 𝑊)) |
| 82 | | dffn4 6801 |
. . . . . . 7
⊢ (𝑓 Fn (𝐼 ∩ 𝑊) ↔ 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) |
| 83 | 81, 82 | sylib 218 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) |
| 84 | | fofi 9328 |
. . . . . 6
⊢ (((𝐼 ∩ 𝑊) ∈ Fin ∧ 𝑓:(𝐼 ∩ 𝑊)–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 85 | 79, 83, 84 | syl2anc 584 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ran 𝑓 ∈ Fin) |
| 86 | | eqid 2736 |
. . . . . 6
⊢ ∪ 𝐽 =
∪ 𝐽 |
| 87 | 86 | rintopn 22852 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ran 𝑓 ∈ Fin) → (∪ 𝐽
∩ ∩ ran 𝑓) ∈ 𝐽) |
| 88 | 76, 78, 85, 87 | syl3anc 1373 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∪
𝐽 ∩ ∩ ran 𝑓) ∈ 𝐽) |
| 89 | 73, 88 | eqeltrd 2835 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) ∈ 𝐽) |
| 90 | 12 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐷 ∈ 𝑋) |
| 91 | | simpl 482 |
. . . . . . 7
⊢ ((𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → 𝐷 ∈ (𝑓‘𝑘)) |
| 92 | 91 | ralimi 3074 |
. . . . . 6
⊢
(∀𝑘 ∈
(𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘)) |
| 93 | 92 | ad2antll 729 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘)) |
| 94 | | eleq2 2824 |
. . . . . . 7
⊢ (𝑧 = (𝑓‘𝑘) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑓‘𝑘))) |
| 95 | 94 | ralrn 7083 |
. . . . . 6
⊢ (𝑓 Fn (𝐼 ∩ 𝑊) → (∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘))) |
| 96 | 81, 95 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧 ↔ ∀𝑘 ∈ (𝐼 ∩ 𝑊)𝐷 ∈ (𝑓‘𝑘))) |
| 97 | 93, 96 | mpbird 257 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧) |
| 98 | | elrint 4970 |
. . . 4
⊢ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ↔ (𝐷 ∈ 𝑋 ∧ ∀𝑧 ∈ ran 𝑓 𝐷 ∈ 𝑧)) |
| 99 | 90, 97, 98 | sylanbrc 583 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓)) |
| 100 | | nfv 1914 |
. . . . . . . . . 10
⊢
Ⅎ𝑘 𝑓:(𝐼 ∩ 𝑊)⟶𝐽 |
| 101 | 7, 100 | nfan 1899 |
. . . . . . . . 9
⊢
Ⅎ𝑘((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) |
| 102 | | funmpt 6579 |
. . . . . . . . . . . . 13
⊢ Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) |
| 103 | | simp-4l 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝜑) |
| 104 | 103, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 105 | | simpllr 775 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) |
| 106 | | simplr 768 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑘 ∈ (𝐼 ∩ 𝑊)) |
| 107 | 105, 106 | ffvelcdmd 7080 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ∈ 𝐽) |
| 108 | | toponss 22870 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ (𝑓‘𝑘) ∈ 𝐽) → (𝑓‘𝑘) ⊆ 𝑋) |
| 109 | 104, 107,
108 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ⊆ 𝑋) |
| 110 | 106 | elin1d 4184 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑘 ∈ 𝐼) |
| 111 | 103, 110,
25 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 112 | | dmmptg 6236 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
| 113 | 111, 112 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → dom (𝑥 ∈ 𝑋 ↦ 𝐴) = 𝑋) |
| 114 | 109, 113 | sseqtrrd 4001 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) |
| 115 | | funimass4 6948 |
. . . . . . . . . . . . 13
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ 𝐴) ∧ (𝑓‘𝑘) ⊆ dom (𝑥 ∈ 𝑋 ↦ 𝐴)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘))) |
| 116 | 102, 114,
115 | sylancr 587 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘))) |
| 117 | | nffvmpt1 6892 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) |
| 118 | 117 | nfel1 2916 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) |
| 119 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) |
| 120 | | fveq2 6881 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) = ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥)) |
| 121 | 120 | eleq1d 2820 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
| 122 | 118, 119,
121 | cbvralw 3290 |
. . . . . . . . . . . 12
⊢
(∀𝑡 ∈
(𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑡) ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) |
| 123 | 116, 122 | bitrdi 287 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
| 124 | | inss1 4217 |
. . . . . . . . . . . . 13
⊢ (𝑋 ∩ ∩ ran 𝑓) ⊆ 𝑋 |
| 125 | | ssralv 4032 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∩ ∩ ran 𝑓) ⊆ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ ∪ (𝐹‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
| 126 | 124, 111,
125 | mpsyl 68 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 127 | | inss2 4218 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∩ ∩ ran 𝑓) ⊆ ∩ ran
𝑓 |
| 128 | 105, 80 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → 𝑓 Fn (𝐼 ∩ 𝑊)) |
| 129 | | fnfvelrn 7075 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 Fn (𝐼 ∩ 𝑊) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → (𝑓‘𝑘) ∈ ran 𝑓) |
| 130 | 128, 106,
129 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑓‘𝑘) ∈ ran 𝑓) |
| 131 | | intss1 4944 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓‘𝑘) ∈ ran 𝑓 → ∩ ran
𝑓 ⊆ (𝑓‘𝑘)) |
| 132 | 130, 131 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → ∩ ran
𝑓 ⊆ (𝑓‘𝑘)) |
| 133 | 127, 132 | sstrid 3975 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (𝑋 ∩ ∩ ran
𝑓) ⊆ (𝑓‘𝑘)) |
| 134 | | ssralv 4032 |
. . . . . . . . . . . . 13
⊢ ((𝑋 ∩ ∩ ran 𝑓) ⊆ (𝑓‘𝑘) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
| 135 | 133, 134 | syl 17 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
| 136 | | r19.26 3099 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)(𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) ↔ (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘))) |
| 137 | | elinel1 4181 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) → 𝑥 ∈ 𝑋) |
| 138 | 137, 27 | sylan 580 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) = 𝐴) |
| 139 | 138 | eleq1d 2820 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) ↔ 𝐴 ∈ (𝐺‘𝑘))) |
| 140 | 139 | biimpd 229 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ 𝐴 ∈ ∪ (𝐹‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → 𝐴 ∈ (𝐺‘𝑘))) |
| 141 | 140 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓) → ((𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → 𝐴 ∈ (𝐺‘𝑘))) |
| 142 | 141 | ralimia 3071 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)(𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 143 | 136, 142 | sylbir 235 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)𝐴 ∈ ∪ (𝐹‘𝑘) ∧ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 144 | 126, 135,
143 | syl6an 684 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (∀𝑥 ∈ (𝑓‘𝑘)((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑥) ∈ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 145 | 123, 144 | sylbid 240 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) ∧ 𝐷 ∈ (𝑓‘𝑘)) → (((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 146 | 145 | expimpd 453 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) ∧ 𝑘 ∈ (𝐼 ∩ 𝑊)) → ((𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 147 | 101, 146 | ralimdaa 3247 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑓:(𝐼 ∩ 𝑊)⟶𝐽) → (∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 148 | 147 | impr 454 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 149 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
| 150 | | eldifi 4111 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (𝐼 ∖ 𝑊) → 𝑘 ∈ 𝐼) |
| 151 | 137, 26 | sylan2 593 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ 𝐼) ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → 𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 152 | 151 | ralrimiva 3133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐼) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 153 | 149, 150,
152 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘)) |
| 154 | | ptcnplem.5 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (𝐺‘𝑘) = ∪ (𝐹‘𝑘)) |
| 155 | | eleq2 2824 |
. . . . . . . . . . . . 13
⊢ ((𝐺‘𝑘) = ∪ (𝐹‘𝑘) → (𝐴 ∈ (𝐺‘𝑘) ↔ 𝐴 ∈ ∪ (𝐹‘𝑘))) |
| 156 | 155 | ralbidv 3164 |
. . . . . . . . . . . 12
⊢ ((𝐺‘𝑘) = ∪ (𝐹‘𝑘) → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
| 157 | 154, 156 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ ∪ (𝐹‘𝑘))) |
| 158 | 153, 157 | mpbird 257 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝜓) ∧ 𝑘 ∈ (𝐼 ∖ 𝑊)) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 159 | 158 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝜓) → (𝑘 ∈ (𝐼 ∖ 𝑊) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 160 | 7, 159 | ralrimi 3244 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝜓) → ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 161 | 160 | adantr 480 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 162 | | inundif 4459 |
. . . . . . . . 9
⊢ ((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊)) = 𝐼 |
| 163 | 162 | raleqi 3307 |
. . . . . . . 8
⊢
(∀𝑘 ∈
((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊))∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 164 | | ralunb 4177 |
. . . . . . . 8
⊢
(∀𝑘 ∈
((𝐼 ∩ 𝑊) ∪ (𝐼 ∖ 𝑊))∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ (∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ∧ ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 165 | 163, 164 | bitr3i 277 |
. . . . . . 7
⊢
(∀𝑘 ∈
𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ↔ (∀𝑘 ∈ (𝐼 ∩ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘) ∧ ∀𝑘 ∈ (𝐼 ∖ 𝑊)∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘))) |
| 166 | 148, 161,
165 | sylanbrc 583 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 167 | | ralcom 3274 |
. . . . . 6
⊢
(∀𝑥 ∈
(𝑋 ∩ ∩ ran 𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)𝐴 ∈ (𝐺‘𝑘)) |
| 168 | 166, 167 | sylibr 234 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘)) |
| 169 | 32 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → 𝐼 ∈ 𝑉) |
| 170 | | nffvmpt1 6892 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) |
| 171 | 170 | nfel1 2916 |
. . . . . . . 8
⊢
Ⅎ𝑥((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) |
| 172 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑡((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) |
| 173 | | fveq2 6881 |
. . . . . . . . 9
⊢ (𝑡 = 𝑥 → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥)) |
| 174 | 173 | eleq1d 2820 |
. . . . . . . 8
⊢ (𝑡 = 𝑥 → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 175 | 171, 172,
174 | cbvralw 3290 |
. . . . . . 7
⊢
(∀𝑡 ∈
(𝑋 ∩ ∩ ran 𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
| 176 | | mptexg 7218 |
. . . . . . . . . . 11
⊢ (𝐼 ∈ 𝑉 → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
| 177 | 137, 176,
36 | syl2anr 597 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) = (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 178 | 177 | eleq1d 2820 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 179 | | mptelixpg 8954 |
. . . . . . . . . 10
⊢ (𝐼 ∈ 𝑉 → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 180 | 179 | adantr 480 |
. . . . . . . . 9
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → ((𝑘 ∈ 𝐼 ↦ 𝐴) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 181 | 178, 180 | bitrd 279 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑉 ∧ 𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 182 | 181 | ralbidva 3162 |
. . . . . . 7
⊢ (𝐼 ∈ 𝑉 → (∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑥) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 183 | 175, 182 | bitrid 283 |
. . . . . 6
⊢ (𝐼 ∈ 𝑉 → (∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 184 | 169, 183 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ∀𝑥 ∈ (𝑋 ∩ ∩ ran
𝑓)∀𝑘 ∈ 𝐼 𝐴 ∈ (𝐺‘𝑘))) |
| 185 | 168, 184 | mpbird 257 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) |
| 186 | | funmpt 6579 |
. . . . 5
⊢ Fun
(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) |
| 187 | 32 | mptexd 7221 |
. . . . . . . . 9
⊢ (𝜑 → (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
| 188 | 187 | ralrimivw 3137 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
| 189 | 188 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∀𝑥 ∈ 𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V) |
| 190 | | dmmptg 6236 |
. . . . . . 7
⊢
(∀𝑥 ∈
𝑋 (𝑘 ∈ 𝐼 ↦ 𝐴) ∈ V → dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = 𝑋) |
| 191 | 189, 190 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) = 𝑋) |
| 192 | 124, 191 | sseqtrrid 4007 |
. . . . 5
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (𝑋 ∩ ∩ ran
𝑓) ⊆ dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))) |
| 193 | | funimass4 6948 |
. . . . 5
⊢ ((Fun
(𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) ∧ (𝑋 ∩ ∩ ran
𝑓) ⊆ dom (𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 194 | 186, 192,
193 | sylancr 587 |
. . . 4
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘) ↔ ∀𝑡 ∈ (𝑋 ∩ ∩ ran
𝑓)((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴))‘𝑡) ∈ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 195 | 185, 194 | mpbird 257 |
. . 3
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘)) |
| 196 | | eleq2 2824 |
. . . . 5
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → (𝐷 ∈ 𝑧 ↔ 𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓))) |
| 197 | | imaeq2 6048 |
. . . . . 6
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) = ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓))) |
| 198 | 197 | sseq1d 3995 |
. . . . 5
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → (((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘) ↔ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘))) |
| 199 | 196, 198 | anbi12d 632 |
. . . 4
⊢ (𝑧 = (𝑋 ∩ ∩ ran
𝑓) → ((𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘)) ↔ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘)))) |
| 200 | 199 | rspcev 3606 |
. . 3
⊢ (((𝑋 ∩ ∩ ran 𝑓) ∈ 𝐽 ∧ (𝐷 ∈ (𝑋 ∩ ∩ ran
𝑓) ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ (𝑋 ∩ ∩ ran
𝑓)) ⊆ X𝑘 ∈
𝐼 (𝐺‘𝑘))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 201 | 89, 99, 195, 200 | syl12anc 836 |
. 2
⊢ (((𝜑 ∧ 𝜓) ∧ (𝑓:(𝐼 ∩ 𝑊)⟶𝐽 ∧ ∀𝑘 ∈ (𝐼 ∩ 𝑊)(𝐷 ∈ (𝑓‘𝑘) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴) “ (𝑓‘𝑘)) ⊆ (𝐺‘𝑘)))) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |
| 202 | 69, 201 | exlimddv 1935 |
1
⊢ ((𝜑 ∧ 𝜓) → ∃𝑧 ∈ 𝐽 (𝐷 ∈ 𝑧 ∧ ((𝑥 ∈ 𝑋 ↦ (𝑘 ∈ 𝐼 ↦ 𝐴)) “ 𝑧) ⊆ X𝑘 ∈ 𝐼 (𝐺‘𝑘))) |