![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elssabg | Structured version Visualization version GIF version |
Description: Membership in a class abstraction involving a subset. Unlike elabg 3663, 𝐴 does not have to be a set. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elssabg.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elssabg | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssexg 5327 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
2 | 1 | expcom 412 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ V)) |
3 | 2 | adantrd 490 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V)) |
4 | sseq1 4004 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
5 | elssabg.1 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
6 | 4, 5 | anbi12d 630 | . . 3 ⊢ (𝑥 = 𝐴 → ((𝑥 ⊆ 𝐵 ∧ 𝜑) ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
7 | 6 | elab3g 3672 | . 2 ⊢ (((𝐴 ⊆ 𝐵 ∧ 𝜓) → 𝐴 ∈ V) → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
8 | 3, 7 | syl 17 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝜑)} ↔ (𝐴 ⊆ 𝐵 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 Vcvv 3461 ⊆ wss 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5303 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3419 df-v 3463 df-in 3953 df-ss 3963 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |