| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4301 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4911 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5257 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
| 8 | vprc 5251 | . . . 4 ⊢ ¬ V ∈ V | |
| 9 | inteq 4898 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 10 | int0 4910 | . . . . . 6 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 12 | 11 | eleq1d 2814 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 14 | 13 | necon2ai 2955 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ⊆ wss 3900 ∅c0 4281 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 ax-sep 5232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-in 3907 df-ss 3917 df-nul 4282 df-int 4896 |
| This theorem is referenced by: intnex 5281 intexab 5282 iinexg 5284 onint0 7719 onintrab 7724 onmindif2 7735 fival 9291 elfi2 9293 elfir 9294 dffi2 9302 elfiun 9309 fifo 9311 tz9.1c 9615 tz9.12lem1 9672 tz9.12lem3 9674 rankf 9679 cardf2 9828 cardval3 9837 cardid2 9838 cardcf 10135 cflim2 10146 intwun 10618 wuncval 10625 inttsk 10657 intgru 10697 gruina 10701 dfrtrcl2 14961 mremre 17498 mrcval 17508 asplss 21804 aspsubrg 21806 toponmre 23001 subbascn 23162 zarclsint 33875 insiga 34140 sigagenval 34143 sigagensiga 34144 dmsigagen 34147 dfon2lem8 35803 dfon2lem9 35804 bj-snmoore 37126 igenval 38080 pclvalN 39908 elrfi 42706 ismrcd1 42710 mzpval 42744 dmmzp 42745 oninfex2 43257 salgenval 46338 intsal 46347 |
| Copyright terms: Public domain | W3C validator |