| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4306 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4916 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5263 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
| 8 | vprc 5257 | . . . 4 ⊢ ¬ V ∈ V | |
| 9 | inteq 4902 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 10 | int0 4915 | . . . . . 6 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 12 | 11 | eleq1d 2813 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 14 | 13 | necon2ai 2954 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3438 ⊆ wss 3905 ∅c0 4286 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-in 3912 df-ss 3922 df-nul 4287 df-int 4900 |
| This theorem is referenced by: intnex 5287 intexab 5288 iinexg 5290 onint0 7731 onintrab 7736 onmindif2 7747 fival 9321 elfi2 9323 elfir 9324 dffi2 9332 elfiun 9339 fifo 9341 tz9.1c 9645 tz9.12lem1 9702 tz9.12lem3 9704 rankf 9709 cardf2 9858 cardval3 9867 cardid2 9868 cardcf 10165 cflim2 10176 intwun 10648 wuncval 10655 inttsk 10687 intgru 10727 gruina 10731 dfrtrcl2 14987 mremre 17524 mrcval 17534 asplss 21799 aspsubrg 21801 toponmre 22996 subbascn 23157 zarclsint 33838 insiga 34103 sigagenval 34106 sigagensiga 34107 dmsigagen 34110 dfon2lem8 35763 dfon2lem9 35764 bj-snmoore 37086 igenval 38040 pclvalN 39869 elrfi 42667 ismrcd1 42671 mzpval 42705 dmmzp 42706 oninfex2 43218 salgenval 46303 intsal 46312 |
| Copyright terms: Public domain | W3C validator |