![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4342 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | intss1 4961 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
3 | vex 3473 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5315 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
6 | 5 | exlimiv 1926 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
8 | vprc 5309 | . . . 4 ⊢ ¬ V ∈ V | |
9 | inteq 4947 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
10 | int0 4960 | . . . . . 6 ⊢ ∩ ∅ = V | |
11 | 9, 10 | eqtrdi 2783 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
12 | 11 | eleq1d 2813 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
14 | 13 | necon2ai 2965 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2935 Vcvv 3469 ⊆ wss 3944 ∅c0 4318 ∩ cint 4944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 ax-sep 5293 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-in 3951 df-ss 3961 df-nul 4319 df-int 4945 |
This theorem is referenced by: intnex 5334 intexab 5335 iinexg 5337 onint0 7788 onintrab 7793 onmindif2 7804 fival 9427 elfi2 9429 elfir 9430 dffi2 9438 elfiun 9445 fifo 9447 tz9.1c 9745 tz9.12lem1 9802 tz9.12lem3 9804 rankf 9809 cardf2 9958 cardval3 9967 cardid2 9968 cardcf 10267 cflim2 10278 intwun 10750 wuncval 10757 inttsk 10789 intgru 10829 gruina 10833 dfrtrcl2 15033 mremre 17575 mrcval 17581 asplss 21794 aspsubrg 21796 toponmre 22984 subbascn 23145 zarclsint 33409 insiga 33692 sigagenval 33695 sigagensiga 33696 dmsigagen 33699 dfon2lem8 35322 dfon2lem9 35323 bj-snmoore 36528 igenval 37469 pclvalN 39300 elrfi 42036 ismrcd1 42040 mzpval 42074 dmmzp 42075 oninfex2 42596 salgenval 45632 intsal 45641 |
Copyright terms: Public domain | W3C validator |