| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4304 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4915 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5263 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1931 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
| 8 | vprc 5257 | . . . 4 ⊢ ¬ V ∈ V | |
| 9 | inteq 4902 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 10 | int0 4914 | . . . . . 6 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | eqtrdi 2784 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 12 | 11 | eleq1d 2818 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 14 | 13 | necon2ai 2959 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ≠ wne 2930 Vcvv 3438 ⊆ wss 3899 ∅c0 4284 ∩ cint 4899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-in 3906 df-ss 3916 df-nul 4285 df-int 4900 |
| This theorem is referenced by: intnex 5287 intexab 5288 iinexg 5290 onint0 7733 onintrab 7738 onmindif2 7749 fival 9306 elfi2 9308 elfir 9309 dffi2 9317 elfiun 9324 fifo 9326 tz9.1c 9630 tz9.12lem1 9690 tz9.12lem3 9692 rankf 9697 cardf2 9846 cardval3 9855 cardid2 9856 cardcf 10153 cflim2 10164 intwun 10636 wuncval 10643 inttsk 10675 intgru 10715 gruina 10719 dfrtrcl2 14979 mremre 17516 mrcval 17526 asplss 21821 aspsubrg 21823 toponmre 23018 subbascn 23179 zarclsint 33896 insiga 34161 sigagenval 34164 sigagensiga 34165 dmsigagen 34168 dfon2lem8 35843 dfon2lem9 35844 bj-snmoore 37168 igenval 38111 pclvalN 39999 elrfi 42801 ismrcd1 42805 mzpval 42839 dmmzp 42840 oninfex2 43352 salgenval 46433 intsal 46442 |
| Copyright terms: Public domain | W3C validator |