| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4328 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4939 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5291 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
| 8 | vprc 5285 | . . . 4 ⊢ ¬ V ∈ V | |
| 9 | inteq 4925 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 10 | int0 4938 | . . . . . 6 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | eqtrdi 2786 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 12 | 11 | eleq1d 2819 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 14 | 13 | necon2ai 2961 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 ∩ cint 4922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-in 3933 df-ss 3943 df-nul 4309 df-int 4923 |
| This theorem is referenced by: intnex 5315 intexab 5316 iinexg 5318 onint0 7785 onintrab 7790 onmindif2 7801 fival 9424 elfi2 9426 elfir 9427 dffi2 9435 elfiun 9442 fifo 9444 tz9.1c 9744 tz9.12lem1 9801 tz9.12lem3 9803 rankf 9808 cardf2 9957 cardval3 9966 cardid2 9967 cardcf 10266 cflim2 10277 intwun 10749 wuncval 10756 inttsk 10788 intgru 10828 gruina 10832 dfrtrcl2 15081 mremre 17616 mrcval 17622 asplss 21834 aspsubrg 21836 toponmre 23031 subbascn 23192 zarclsint 33903 insiga 34168 sigagenval 34171 sigagensiga 34172 dmsigagen 34175 dfon2lem8 35808 dfon2lem9 35809 bj-snmoore 37131 igenval 38085 pclvalN 39909 elrfi 42717 ismrcd1 42721 mzpval 42755 dmmzp 42756 oninfex2 43269 salgenval 46350 intsal 46359 |
| Copyright terms: Public domain | W3C validator |