Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4277 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | intss1 4891 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5240 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
6 | 5 | exlimiv 1934 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
8 | vprc 5234 | . . . 4 ⊢ ¬ V ∈ V | |
9 | inteq 4879 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
10 | int0 4890 | . . . . . 6 ⊢ ∩ ∅ = V | |
11 | 9, 10 | eqtrdi 2795 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
12 | 11 | eleq1d 2823 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
13 | 8, 12 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
14 | 13 | necon2ai 2972 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-in 3890 df-ss 3900 df-nul 4254 df-int 4877 |
This theorem is referenced by: intnex 5257 intexab 5258 iinexg 5260 onint0 7618 onintrab 7623 onmindif2 7634 fival 9101 elfi2 9103 elfir 9104 dffi2 9112 elfiun 9119 fifo 9121 tz9.1c 9419 tz9.12lem1 9476 tz9.12lem3 9478 rankf 9483 cardf2 9632 cardval3 9641 cardid2 9642 cardcf 9939 cflim2 9950 intwun 10422 wuncval 10429 inttsk 10461 intgru 10501 gruina 10505 dfrtrcl2 14701 mremre 17230 mrcval 17236 asplss 20988 aspsubrg 20990 toponmre 22152 subbascn 22313 zarclsint 31724 insiga 32005 sigagenval 32008 sigagensiga 32009 dmsigagen 32012 dfon2lem8 33672 dfon2lem9 33673 bj-snmoore 35211 igenval 36146 pclvalN 37831 elrfi 40432 ismrcd1 40436 mzpval 40470 dmmzp 40471 salgenval 43752 intsal 43759 |
Copyright terms: Public domain | W3C validator |