![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4346 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | intss1 4967 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
3 | vex 3479 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5321 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
6 | 5 | exlimiv 1934 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
8 | vprc 5315 | . . . 4 ⊢ ¬ V ∈ V | |
9 | inteq 4953 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
10 | int0 4966 | . . . . . 6 ⊢ ∩ ∅ = V | |
11 | 9, 10 | eqtrdi 2789 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
12 | 11 | eleq1d 2819 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
14 | 13 | necon2ai 2971 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ⊆ wss 3948 ∅c0 4322 ∩ cint 4950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-int 4951 |
This theorem is referenced by: intnex 5338 intexab 5339 iinexg 5341 onint0 7776 onintrab 7781 onmindif2 7792 fival 9404 elfi2 9406 elfir 9407 dffi2 9415 elfiun 9422 fifo 9424 tz9.1c 9722 tz9.12lem1 9779 tz9.12lem3 9781 rankf 9786 cardf2 9935 cardval3 9944 cardid2 9945 cardcf 10244 cflim2 10255 intwun 10727 wuncval 10734 inttsk 10766 intgru 10806 gruina 10810 dfrtrcl2 15006 mremre 17545 mrcval 17551 asplss 21420 aspsubrg 21422 toponmre 22589 subbascn 22750 zarclsint 32841 insiga 33124 sigagenval 33127 sigagensiga 33128 dmsigagen 33131 dfon2lem8 34751 dfon2lem9 34752 bj-snmoore 35983 igenval 36918 pclvalN 38750 elrfi 41418 ismrcd1 41422 mzpval 41456 dmmzp 41457 oninfex2 41980 salgenval 45024 intsal 45033 |
Copyright terms: Public domain | W3C validator |