![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4347 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | intss1 4966 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
3 | vex 3467 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5321 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
6 | 5 | exlimiv 1925 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
8 | vprc 5315 | . . . 4 ⊢ ¬ V ∈ V | |
9 | inteq 4952 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
10 | int0 4965 | . . . . . 6 ⊢ ∩ ∅ = V | |
11 | 9, 10 | eqtrdi 2781 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
12 | 11 | eleq1d 2810 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
13 | 8, 12 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
14 | 13 | necon2ai 2960 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ⊆ wss 3945 ∅c0 4323 ∩ cint 4949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-in 3952 df-ss 3962 df-nul 4324 df-int 4950 |
This theorem is referenced by: intnex 5340 intexab 5341 iinexg 5343 onint0 7793 onintrab 7798 onmindif2 7809 fival 9435 elfi2 9437 elfir 9438 dffi2 9446 elfiun 9453 fifo 9455 tz9.1c 9753 tz9.12lem1 9810 tz9.12lem3 9812 rankf 9817 cardf2 9966 cardval3 9975 cardid2 9976 cardcf 10275 cflim2 10286 intwun 10758 wuncval 10765 inttsk 10797 intgru 10837 gruina 10841 dfrtrcl2 15041 mremre 17583 mrcval 17589 asplss 21811 aspsubrg 21813 toponmre 23027 subbascn 23188 zarclsint 33543 insiga 33826 sigagenval 33829 sigagensiga 33830 dmsigagen 33833 dfon2lem8 35456 dfon2lem9 35457 bj-snmoore 36662 igenval 37604 pclvalN 39432 elrfi 42179 ismrcd1 42183 mzpval 42217 dmmzp 42218 oninfex2 42738 salgenval 45772 intsal 45781 |
Copyright terms: Public domain | W3C validator |