Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version |
Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0 4293 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
2 | intss1 4911 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
3 | vex 3445 | . . . . . 6 ⊢ 𝑥 ∈ V | |
4 | 3 | ssex 5265 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
6 | 5 | exlimiv 1932 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
7 | 1, 6 | sylbi 216 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
8 | vprc 5259 | . . . 4 ⊢ ¬ V ∈ V | |
9 | inteq 4897 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
10 | int0 4910 | . . . . . 6 ⊢ ∩ ∅ = V | |
11 | 9, 10 | eqtrdi 2792 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
12 | 11 | eleq1d 2821 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
13 | 8, 12 | mtbiri 326 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
14 | 13 | necon2ai 2970 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
15 | 7, 14 | impbii 208 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 Vcvv 3441 ⊆ wss 3898 ∅c0 4269 ∩ cint 4894 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rab 3404 df-v 3443 df-dif 3901 df-in 3905 df-ss 3915 df-nul 4270 df-int 4895 |
This theorem is referenced by: intnex 5282 intexab 5283 iinexg 5285 onint0 7704 onintrab 7709 onmindif2 7720 fival 9269 elfi2 9271 elfir 9272 dffi2 9280 elfiun 9287 fifo 9289 tz9.1c 9587 tz9.12lem1 9644 tz9.12lem3 9646 rankf 9651 cardf2 9800 cardval3 9809 cardid2 9810 cardcf 10109 cflim2 10120 intwun 10592 wuncval 10599 inttsk 10631 intgru 10671 gruina 10675 dfrtrcl2 14872 mremre 17410 mrcval 17416 asplss 21184 aspsubrg 21186 toponmre 22350 subbascn 22511 zarclsint 32120 insiga 32403 sigagenval 32406 sigagensiga 32407 dmsigagen 32410 dfon2lem8 34049 dfon2lem9 34050 bj-snmoore 35397 igenval 36332 pclvalN 38166 elrfi 40786 ismrcd1 40790 mzpval 40824 dmmzp 40825 salgenval 44206 intsal 44213 |
Copyright terms: Public domain | W3C validator |