| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intex | Structured version Visualization version GIF version | ||
| Description: The intersection of a nonempty class exists. Exercise 5 of [TakeutiZaring] p. 44 and its converse. (Contributed by NM, 13-Aug-2002.) |
| Ref | Expression |
|---|---|
| intex | ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 4316 | . . 3 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | |
| 2 | intss1 4927 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ⊆ 𝑥) | |
| 3 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 4 | 3 | ssex 5276 | . . . . 5 ⊢ (∩ 𝐴 ⊆ 𝑥 → ∩ 𝐴 ∈ V) |
| 5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 6 | 5 | exlimiv 1930 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐴 → ∩ 𝐴 ∈ V) |
| 7 | 1, 6 | sylbi 217 | . 2 ⊢ (𝐴 ≠ ∅ → ∩ 𝐴 ∈ V) |
| 8 | vprc 5270 | . . . 4 ⊢ ¬ V ∈ V | |
| 9 | inteq 4913 | . . . . . 6 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 10 | int0 4926 | . . . . . 6 ⊢ ∩ ∅ = V | |
| 11 | 9, 10 | eqtrdi 2780 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 12 | 11 | eleq1d 2813 | . . . 4 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 13 | 8, 12 | mtbiri 327 | . . 3 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 14 | 13 | necon2ai 2954 | . 2 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| 15 | 7, 14 | impbii 209 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∩ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 ∩ cint 4910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-in 3921 df-ss 3931 df-nul 4297 df-int 4911 |
| This theorem is referenced by: intnex 5300 intexab 5301 iinexg 5303 onint0 7767 onintrab 7772 onmindif2 7783 fival 9363 elfi2 9365 elfir 9366 dffi2 9374 elfiun 9381 fifo 9383 tz9.1c 9683 tz9.12lem1 9740 tz9.12lem3 9742 rankf 9747 cardf2 9896 cardval3 9905 cardid2 9906 cardcf 10205 cflim2 10216 intwun 10688 wuncval 10695 inttsk 10727 intgru 10767 gruina 10771 dfrtrcl2 15028 mremre 17565 mrcval 17571 asplss 21783 aspsubrg 21785 toponmre 22980 subbascn 23141 zarclsint 33862 insiga 34127 sigagenval 34130 sigagensiga 34131 dmsigagen 34134 dfon2lem8 35778 dfon2lem9 35779 bj-snmoore 37101 igenval 38055 pclvalN 39884 elrfi 42682 ismrcd1 42686 mzpval 42720 dmmzp 42721 oninfex2 43234 salgenval 46319 intsal 46328 |
| Copyright terms: Public domain | W3C validator |