MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elab3g Structured version   Visualization version   GIF version

Theorem elab3g 3688
Description: Membership in a class abstraction, with a weaker antecedent than elabg 3677. (Contributed by NM, 29-Aug-2006.)
Hypothesis
Ref Expression
elab3g.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
elab3g ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Distinct variable groups:   𝜓,𝑥   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elab3g
StepHypRef Expression
1 elab3g.1 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
21elabg 3677 . . . 4 (𝐴 ∈ {𝑥𝜑} → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
32ibi 267 . . 3 (𝐴 ∈ {𝑥𝜑} → 𝜓)
4 pm2.21 123 . . 3 𝜓 → (𝜓𝐴 ∈ {𝑥𝜑}))
53, 4impbid2 226 . 2 𝜓 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
61elabg 3677 . 2 (𝐴𝐵 → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
75, 6ja 186 1 ((𝜓𝐴𝐵) → (𝐴 ∈ {𝑥𝜑} ↔ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1537  wcel 2106  {cab 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814
This theorem is referenced by:  elab3  3689  elssabg  5349  elrnmptg  5975  elrelimasn  6106  elmapg  8878  isust  24228  ellimc  25923  isismty  37788  clublem  43600
  Copyright terms: Public domain W3C validator