![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab3g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabg 3666. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elab3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3g | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elabg 3666 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
3 | 2 | ibi 267 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
5 | 3, 4 | impbid2 225 | . 2 ⊢ (¬ 𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
6 | 1 | elabg 3666 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
7 | 5, 6 | ja 186 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 |
This theorem is referenced by: elab3 3676 elssabg 5336 elrnmptg 5958 elrelimasn 6084 elmapg 8836 isust 23929 ellimc 25623 isismty 36973 clublem 42664 |
Copyright terms: Public domain | W3C validator |