![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elab3g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabg 3540. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elab3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3g | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2941 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfv 2010 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | elab3g.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | elab3gf 3548 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 = wceq 1653 ∈ wcel 2157 {cab 2785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-v 3387 |
This theorem is referenced by: elab3 3550 elssabg 5011 elrnmptg 5579 elrelimasn 5706 elmapg 8108 isust 22335 ellimc 23978 isismty 34087 clublem 38700 |
Copyright terms: Public domain | W3C validator |