| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elab3g | Structured version Visualization version GIF version | ||
| Description: Membership in a class abstraction, with a weaker antecedent than elabg 3643. (Contributed by NM, 29-Aug-2006.) |
| Ref | Expression |
|---|---|
| elab3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| elab3g | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elab3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | elabg 3643 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 3 | 2 | ibi 267 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
| 4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
| 5 | 3, 4 | impbid2 226 | . 2 ⊢ (¬ 𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 6 | 1 | elabg 3643 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| 7 | 5, 6 | ja 186 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {cab 2707 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 |
| This theorem is referenced by: elab3 3653 elssabg 5298 elrnmptg 5925 elrelimasn 6057 elmapg 8812 isust 24091 ellimc 25774 isismty 37795 clublem 43599 |
| Copyright terms: Public domain | W3C validator |