Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elab3g | Structured version Visualization version GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabg 3600. (Contributed by NM, 29-Aug-2006.) |
Ref | Expression |
---|---|
elab3g.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elab3g | ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3g.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elabg 3600 | . . . 4 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
3 | 2 | ibi 266 | . . 3 ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} → 𝜓) |
4 | pm2.21 123 | . . 3 ⊢ (¬ 𝜓 → (𝜓 → 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
5 | 3, 4 | impbid2 225 | . 2 ⊢ (¬ 𝜓 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
6 | 1 | elabg 3600 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
7 | 5, 6 | ja 186 | 1 ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 {cab 2715 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: elab3 3610 elssabg 5255 elrnmptg 5857 elrelimasn 5982 elmapg 8586 isust 23263 ellimc 24942 isismty 35886 clublem 41107 |
Copyright terms: Public domain | W3C validator |