![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rab2ex | Structured version Visualization version GIF version |
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rab2ex.1 | ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} |
rab2ex.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rab2ex | ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rab2ex.1 | . . 3 ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} | |
2 | rab2ex.2 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | rabex2 5327 | . 2 ⊢ 𝐵 ∈ V |
4 | 3 | rabex 5325 | 1 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 {crab 3426 Vcvv 3468 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 ax-sep 5292 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rab 3427 df-v 3470 df-in 3950 df-ss 3960 |
This theorem is referenced by: gsumbagdiagOLD 21829 gsumbagdiag 21832 psrlidm 21861 psrridm 21862 psrass1 21863 mdegmullem 25965 vtxdginducedm1lem4 29304 vtxdginducedm1 29305 |
Copyright terms: Public domain | W3C validator |