Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab2ex Structured version   Visualization version   GIF version

Theorem rab2ex 5203
 Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rab2ex.1 𝐵 = {𝑦𝐴𝜓}
rab2ex.2 𝐴 ∈ V
Assertion
Ref Expression
rab2ex {𝑥𝐵𝜑} ∈ V
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem rab2ex
StepHypRef Expression
1 rab2ex.1 . . 3 𝐵 = {𝑦𝐴𝜓}
2 rab2ex.2 . . 3 𝐴 ∈ V
31, 2rabex2 5202 . 2 𝐵 ∈ V
43rabex 5200 1 {𝑥𝐵𝜑} ∈ V
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3441 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-ext 2770  ax-sep 5168 This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-rab 3115  df-v 3443  df-in 3888  df-ss 3898 This theorem is referenced by:  gsumbagdiag  20620  psrlidm  20647  psrridm  20648  psrass1  20649  mdegmullem  24689  vtxdginducedm1lem4  27342  vtxdginducedm1  27343
 Copyright terms: Public domain W3C validator