Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rab2ex | Structured version Visualization version GIF version |
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
Ref | Expression |
---|---|
rab2ex.1 | ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} |
rab2ex.2 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
rab2ex | ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rab2ex.1 | . . 3 ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} | |
2 | rab2ex.2 | . . 3 ⊢ 𝐴 ∈ V | |
3 | 1, 2 | rabex2 5253 | . 2 ⊢ 𝐵 ∈ V |
4 | 3 | rabex 5251 | 1 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {crab 3067 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: gsumbagdiagOLD 21052 gsumbagdiag 21055 psrlidm 21082 psrridm 21083 psrass1 21084 mdegmullem 25148 vtxdginducedm1lem4 27812 vtxdginducedm1 27813 |
Copyright terms: Public domain | W3C validator |