MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rab2ex Structured version   Visualization version   GIF version

Theorem rab2ex 5259
Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.)
Hypotheses
Ref Expression
rab2ex.1 𝐵 = {𝑦𝐴𝜓}
rab2ex.2 𝐴 ∈ V
Assertion
Ref Expression
rab2ex {𝑥𝐵𝜑} ∈ V
Distinct variable groups:   𝑥,𝐵   𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem rab2ex
StepHypRef Expression
1 rab2ex.1 . . 3 𝐵 = {𝑦𝐴𝜓}
2 rab2ex.2 . . 3 𝐴 ∈ V
31, 2rabex2 5258 . 2 𝐵 ∈ V
43rabex 5256 1 {𝑥𝐵𝜑} ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894  df-ss 3904
This theorem is referenced by:  gsumbagdiagOLD  21142  gsumbagdiag  21145  psrlidm  21172  psrridm  21173  psrass1  21174  mdegmullem  25243  vtxdginducedm1lem4  27909  vtxdginducedm1  27910
  Copyright terms: Public domain W3C validator