| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rab2ex | Structured version Visualization version GIF version | ||
| Description: A class abstraction based on a class abstraction based on a set is a set. (Contributed by AV, 16-Jul-2019.) (Revised by AV, 26-Mar-2021.) |
| Ref | Expression |
|---|---|
| rab2ex.1 | ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} |
| rab2ex.2 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| rab2ex | ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rab2ex.1 | . . 3 ⊢ 𝐵 = {𝑦 ∈ 𝐴 ∣ 𝜓} | |
| 2 | rab2ex.2 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | 1, 2 | rabex2 5316 | . 2 ⊢ 𝐵 ∈ V |
| 4 | 3 | rabex 5314 | 1 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 {crab 3420 Vcvv 3464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-in 3938 df-ss 3948 df-pw 4582 |
| This theorem is referenced by: gsumbagdiag 21896 psrlidm 21927 psrridm 21928 psrass1 21929 mdegmullem 26040 vtxdginducedm1lem4 29527 vtxdginducedm1 29528 |
| Copyright terms: Public domain | W3C validator |