| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elunant | Structured version Visualization version GIF version | ||
| Description: A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| elunant | ⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4153 | . . 3 ⊢ (𝐶 ∈ (𝐴 ∪ 𝐵) ↔ (𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵)) | |
| 2 | 1 | imbi1i 349 | . 2 ⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵) → 𝜑)) |
| 3 | jaob 964 | . 2 ⊢ (((𝐶 ∈ 𝐴 ∨ 𝐶 ∈ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | 1 ⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∈ wcel 2108 ∪ cun 3949 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-un 3956 |
| This theorem is referenced by: unss 4190 ralunb 4197 intun 4980 srcmpltd 35094 |
| Copyright terms: Public domain | W3C validator |