MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elunant Structured version   Visualization version   GIF version

Theorem elunant 4164
Description: A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.)
Assertion
Ref Expression
elunant ((𝐶 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝐶𝐴𝜑) ∧ (𝐶𝐵𝜑)))

Proof of Theorem elunant
StepHypRef Expression
1 elun 4133 . . 3 (𝐶 ∈ (𝐴𝐵) ↔ (𝐶𝐴𝐶𝐵))
21imbi1i 349 . 2 ((𝐶 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝐶𝐴𝐶𝐵) → 𝜑))
3 jaob 963 . 2 (((𝐶𝐴𝐶𝐵) → 𝜑) ↔ ((𝐶𝐴𝜑) ∧ (𝐶𝐵𝜑)))
42, 3bitri 275 1 ((𝐶 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝐶𝐴𝜑) ∧ (𝐶𝐵𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  wcel 2109  cun 3929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-un 3936
This theorem is referenced by:  unss  4170  ralunb  4177  intun  4961  srcmpltd  35116
  Copyright terms: Public domain W3C validator