MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intun Structured version   Visualization version   GIF version

Theorem intun 4985
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem intun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1871 . . . 4 (∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
2 elunant 4179 . . . . 5 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
32albii 1819 . . . 4 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
4 vex 3476 . . . . . 6 𝑥 ∈ V
54elint 4957 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
64elint 4957 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
75, 6anbi12i 625 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
81, 3, 73bitr4i 302 . . 3 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ (𝑥 𝐴𝑥 𝐵))
94elint 4957 . . 3 (𝑥 (𝐴𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦))
10 elin 3965 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
118, 9, 103bitr4i 302 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1211eqriv 2727 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wal 1537   = wceq 1539  wcel 2104  cun 3947  cin 3948   cint 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-v 3474  df-un 3954  df-in 3956  df-int 4952
This theorem is referenced by:  intunsn  4994  riinint  5968  fiin  9421  elfiun  9429  elrfi  41736
  Copyright terms: Public domain W3C validator