Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intun | Structured version Visualization version GIF version |
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
Ref | Expression |
---|---|
intun | ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1874 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
2 | elunant 4108 | . . . . 5 ⊢ ((𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
3 | 2 | albii 1823 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
4 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | 4 | elint 4882 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
6 | 4 | elint 4882 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
7 | 5, 6 | anbi12i 626 | . . . 4 ⊢ ((𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
8 | 1, 3, 7 | 3bitr4i 302 | . . 3 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) |
9 | 4 | elint 4882 | . . 3 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦)) |
10 | elin 3899 | . . 3 ⊢ (𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) | |
11 | 8, 9, 10 | 3bitr4i 302 | . 2 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵)) |
12 | 11 | eqriv 2735 | 1 ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1537 = wceq 1539 ∈ wcel 2108 ∪ cun 3881 ∩ cin 3882 ∩ cint 4876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-int 4877 |
This theorem is referenced by: intunsn 4917 riinint 5866 fiin 9111 elfiun 9119 elrfi 40432 |
Copyright terms: Public domain | W3C validator |