| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > intun | Structured version Visualization version GIF version | ||
| Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
| Ref | Expression |
|---|---|
| intun | ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.26 1871 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
| 2 | elunant 4132 | . . . . 5 ⊢ ((𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
| 3 | 2 | albii 1820 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
| 4 | vex 3438 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 5 | 4 | elint 4901 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
| 6 | 4 | elint 4901 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
| 7 | 5, 6 | anbi12i 628 | . . . 4 ⊢ ((𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
| 8 | 1, 3, 7 | 3bitr4i 303 | . . 3 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) |
| 9 | 4 | elint 4901 | . . 3 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦)) |
| 10 | elin 3916 | . . 3 ⊢ (𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) | |
| 11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵)) |
| 12 | 11 | eqriv 2727 | 1 ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2110 ∪ cun 3898 ∩ cin 3899 ∩ cint 4895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-un 3905 df-in 3907 df-int 4896 |
| This theorem is referenced by: intunsn 4935 riinint 5908 fiin 9301 elfiun 9309 elrfi 42706 |
| Copyright terms: Public domain | W3C validator |