![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intun | Structured version Visualization version GIF version |
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
Ref | Expression |
---|---|
intun | ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1869 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
2 | elunant 4207 | . . . . 5 ⊢ ((𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
3 | 2 | albii 1817 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
4 | vex 3492 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | 4 | elint 4976 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
6 | 4 | elint 4976 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
7 | 5, 6 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
8 | 1, 3, 7 | 3bitr4i 303 | . . 3 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) |
9 | 4 | elint 4976 | . . 3 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦)) |
10 | elin 3992 | . . 3 ⊢ (𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) | |
11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵)) |
12 | 11 | eqriv 2737 | 1 ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ∩ cin 3975 ∩ cint 4970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-in 3983 df-int 4971 |
This theorem is referenced by: intunsn 5011 riinint 5994 fiin 9491 elfiun 9499 elrfi 42650 |
Copyright terms: Public domain | W3C validator |