Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > intun | Structured version Visualization version GIF version |
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.) |
Ref | Expression |
---|---|
intun | ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1873 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
2 | elunant 4112 | . . . . 5 ⊢ ((𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) | |
3 | 2 | albii 1822 | . . . 4 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ ∀𝑦((𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ (𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
4 | vex 3436 | . . . . . 6 ⊢ 𝑥 ∈ V | |
5 | 4 | elint 4885 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦)) |
6 | 4 | elint 4885 | . . . . 5 ⊢ (𝑥 ∈ ∩ 𝐵 ↔ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦)) |
7 | 5, 6 | anbi12i 627 | . . . 4 ⊢ ((𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵) ↔ (∀𝑦(𝑦 ∈ 𝐴 → 𝑥 ∈ 𝑦) ∧ ∀𝑦(𝑦 ∈ 𝐵 → 𝑥 ∈ 𝑦))) |
8 | 1, 3, 7 | 3bitr4i 303 | . . 3 ⊢ (∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) |
9 | 4 | elint 4885 | . . 3 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝑦)) |
10 | elin 3903 | . . 3 ⊢ (𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵) ↔ (𝑥 ∈ ∩ 𝐴 ∧ 𝑥 ∈ ∩ 𝐵)) | |
11 | 8, 9, 10 | 3bitr4i 303 | . 2 ⊢ (𝑥 ∈ ∩ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ (∩ 𝐴 ∩ ∩ 𝐵)) |
12 | 11 | eqriv 2735 | 1 ⊢ ∩ (𝐴 ∪ 𝐵) = (∩ 𝐴 ∩ ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 ∩ cin 3886 ∩ cint 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-int 4880 |
This theorem is referenced by: intunsn 4920 riinint 5877 fiin 9181 elfiun 9189 elrfi 40516 |
Copyright terms: Public domain | W3C validator |