MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intun Structured version   Visualization version   GIF version

Theorem intun 5004
Description: The class intersection of the union of two classes. Theorem 78 of [Suppes] p. 42. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
intun (𝐴𝐵) = ( 𝐴 𝐵)

Proof of Theorem intun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 19.26 1869 . . . 4 (∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
2 elunant 4207 . . . . 5 ((𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
32albii 1817 . . . 4 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ ∀𝑦((𝑦𝐴𝑥𝑦) ∧ (𝑦𝐵𝑥𝑦)))
4 vex 3492 . . . . . 6 𝑥 ∈ V
54elint 4976 . . . . 5 (𝑥 𝐴 ↔ ∀𝑦(𝑦𝐴𝑥𝑦))
64elint 4976 . . . . 5 (𝑥 𝐵 ↔ ∀𝑦(𝑦𝐵𝑥𝑦))
75, 6anbi12i 627 . . . 4 ((𝑥 𝐴𝑥 𝐵) ↔ (∀𝑦(𝑦𝐴𝑥𝑦) ∧ ∀𝑦(𝑦𝐵𝑥𝑦)))
81, 3, 73bitr4i 303 . . 3 (∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦) ↔ (𝑥 𝐴𝑥 𝐵))
94elint 4976 . . 3 (𝑥 (𝐴𝐵) ↔ ∀𝑦(𝑦 ∈ (𝐴𝐵) → 𝑥𝑦))
10 elin 3992 . . 3 (𝑥 ∈ ( 𝐴 𝐵) ↔ (𝑥 𝐴𝑥 𝐵))
118, 9, 103bitr4i 303 . 2 (𝑥 (𝐴𝐵) ↔ 𝑥 ∈ ( 𝐴 𝐵))
1211eqriv 2737 1 (𝐴𝐵) = ( 𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  cun 3974  cin 3975   cint 4970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-un 3981  df-in 3983  df-int 4971
This theorem is referenced by:  intunsn  5011  riinint  5994  fiin  9491  elfiun  9499  elrfi  42650
  Copyright terms: Public domain W3C validator