MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss1 Structured version   Visualization version   GIF version

Theorem unss1 4144
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem unss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3937 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21orim1d 967 . . 3 (𝐴𝐵 → ((𝑥𝐴𝑥𝐶) → (𝑥𝐵𝑥𝐶)))
3 elun 4112 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elun 4112 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43imtr4g 296 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐴𝐶) → 𝑥 ∈ (𝐵𝐶)))
65ssrdv 3949 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2109  cun 3909  wss 3911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-ss 3928
This theorem is referenced by:  unss2  4146  unss12  4147  eldifpw  7724  orderseqlem  8113  tposss  8183  dftpos4  8201  hashbclem  14393  incexclem  15778  mreexexlem2d  17582  catcoppccl  18055  neitr  23043  restntr  23045  leordtval2  23075  cmpcld  23265  uniioombllem3  25462  limcres  25763  plyss  26080  mulsproplem13  28007  mulsproplem14  28008  shlej1  31262  fineqvac  35060  ss2mcls  35528  bj-rrhatsscchat  37197  pclfinclN  39917  dmtposss  48837
  Copyright terms: Public domain W3C validator