| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss1 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3937 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orim1d 967 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4112 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) → 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | ssrdv 3949 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2109 ∪ cun 3909 ⊆ wss 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-ss 3928 |
| This theorem is referenced by: unss2 4146 unss12 4147 eldifpw 7724 orderseqlem 8113 tposss 8183 dftpos4 8201 hashbclem 14393 incexclem 15778 mreexexlem2d 17582 catcoppccl 18055 neitr 23043 restntr 23045 leordtval2 23075 cmpcld 23265 uniioombllem3 25462 limcres 25763 plyss 26080 mulsproplem13 28007 mulsproplem14 28008 shlej1 31262 fineqvac 35060 ss2mcls 35528 bj-rrhatsscchat 37197 pclfinclN 39917 dmtposss 48837 |
| Copyright terms: Public domain | W3C validator |