![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss1 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 4002 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | orim1d 966 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) → 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | ssrdv 4014 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: unss2 4210 unss12 4211 eldifpw 7803 orderseqlem 8198 tposss 8268 dftpos4 8286 hashbclem 14501 incexclem 15884 mreexexlem2d 17703 catcoppccl 18184 catcoppcclOLD 18185 neitr 23209 restntr 23211 leordtval2 23241 cmpcld 23431 uniioombllem3 25639 limcres 25941 plyss 26258 mulsproplem13 28172 mulsproplem14 28173 shlej1 31392 fineqvac 35073 ss2mcls 35536 bj-rrhatsscchat 37202 pclfinclN 39907 |
Copyright terms: Public domain | W3C validator |