| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss1 | Structured version Visualization version GIF version | ||
| Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3923 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
| 2 | 1 | orim1d 967 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
| 3 | elun 4100 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
| 4 | elun 4100 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
| 5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) → 𝑥 ∈ (𝐵 ∪ 𝐶))) |
| 6 | 5 | ssrdv 3935 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 ∈ wcel 2111 ∪ cun 3895 ⊆ wss 3897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-ss 3914 |
| This theorem is referenced by: unss2 4134 unss12 4135 eldifpw 7701 orderseqlem 8087 tposss 8157 dftpos4 8175 hashbclem 14359 incexclem 15743 mreexexlem2d 17551 catcoppccl 18024 neitr 23095 restntr 23097 leordtval2 23127 cmpcld 23317 uniioombllem3 25513 limcres 25814 plyss 26131 mulsproplem13 28067 mulsproplem14 28068 shlej1 31340 fineqvac 35139 ss2mcls 35612 bj-rrhatsscchat 37278 pclfinclN 39997 dmtposss 48915 |
| Copyright terms: Public domain | W3C validator |