MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss1 Structured version   Visualization version   GIF version

Theorem unss1 4136
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem unss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3929 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21orim1d 967 . . 3 (𝐴𝐵 → ((𝑥𝐴𝑥𝐶) → (𝑥𝐵𝑥𝐶)))
3 elun 4104 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elun 4104 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43imtr4g 296 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐴𝐶) → 𝑥 ∈ (𝐵𝐶)))
65ssrdv 3941 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847  wcel 2109  cun 3901  wss 3903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-un 3908  df-ss 3920
This theorem is referenced by:  unss2  4138  unss12  4139  eldifpw  7704  orderseqlem  8090  tposss  8160  dftpos4  8178  hashbclem  14359  incexclem  15743  mreexexlem2d  17551  catcoppccl  18024  neitr  23065  restntr  23067  leordtval2  23097  cmpcld  23287  uniioombllem3  25484  limcres  25785  plyss  26102  mulsproplem13  28036  mulsproplem14  28037  shlej1  31304  fineqvac  35072  ss2mcls  35541  bj-rrhatsscchat  37210  pclfinclN  39929  dmtposss  48860
  Copyright terms: Public domain W3C validator