![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss1 | Structured version Visualization version GIF version |
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unss1 | ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3976 | . . . 4 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵)) | |
2 | 1 | orim1d 965 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶) → (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶))) |
3 | elun 4149 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐶) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐶)) | |
4 | elun 4149 | . . 3 ⊢ (𝑥 ∈ (𝐵 ∪ 𝐶) ↔ (𝑥 ∈ 𝐵 ∨ 𝑥 ∈ 𝐶)) | |
5 | 2, 3, 4 | 3imtr4g 296 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (𝑥 ∈ (𝐴 ∪ 𝐶) → 𝑥 ∈ (𝐵 ∪ 𝐶))) |
6 | 5 | ssrdv 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 ∈ wcel 2107 ∪ cun 3947 ⊆ wss 3949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3954 df-in 3956 df-ss 3966 |
This theorem is referenced by: unss2 4182 unss12 4183 eldifpw 7755 orderseqlem 8143 tposss 8212 dftpos4 8230 hashbclem 14411 incexclem 15782 mreexexlem2d 17589 catcoppccl 18067 catcoppcclOLD 18068 neitr 22684 restntr 22686 leordtval2 22716 cmpcld 22906 uniioombllem3 25102 limcres 25403 plyss 25713 mulsproplem13 27584 mulsproplem14 27585 shlej1 30613 fineqvac 34097 ss2mcls 34559 bj-rrhatsscchat 36117 pclfinclN 38821 |
Copyright terms: Public domain | W3C validator |