MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss1 Structured version   Visualization version   GIF version

Theorem unss1 4179
Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unss1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))

Proof of Theorem unss1
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3973 . . . 4 (𝐴𝐵 → (𝑥𝐴𝑥𝐵))
21orim1d 963 . . 3 (𝐴𝐵 → ((𝑥𝐴𝑥𝐶) → (𝑥𝐵𝑥𝐶)))
3 elun 4147 . . 3 (𝑥 ∈ (𝐴𝐶) ↔ (𝑥𝐴𝑥𝐶))
4 elun 4147 . . 3 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
52, 3, 43imtr4g 295 . 2 (𝐴𝐵 → (𝑥 ∈ (𝐴𝐶) → 𝑥 ∈ (𝐵𝐶)))
65ssrdv 3986 1 (𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 845  wcel 2098  cun 3945  wss 3947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2705  df-cleq 2719  df-clel 2805  df-v 3473  df-un 3952  df-in 3954  df-ss 3964
This theorem is referenced by:  unss2  4181  unss12  4182  eldifpw  7774  orderseqlem  8166  tposss  8237  dftpos4  8255  hashbclem  14449  incexclem  15820  mreexexlem2d  17630  catcoppccl  18111  catcoppcclOLD  18112  neitr  23102  restntr  23104  leordtval2  23134  cmpcld  23324  uniioombllem3  25532  limcres  25833  plyss  26151  mulsproplem13  28046  mulsproplem14  28047  shlej1  31188  fineqvac  34722  ss2mcls  35183  bj-rrhatsscchat  36720  pclfinclN  39427
  Copyright terms: Public domain W3C validator