Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4112 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1873 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3069 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 627 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-v 3434 df-un 3892 |
This theorem is referenced by: ralun 4126 raldifeq 4424 ralprgf 4628 ralprg 4630 raltpg 4634 ralunsn 4825 disjxun 5072 undifixp 8722 ixpfi2 9117 dffi3 9190 fseqenlem1 9780 hashf1lem1 14168 hashf1lem1OLD 14169 pfxsuffeqwrdeq 14411 rexfiuz 15059 modfsummods 15505 modfsummod 15506 coprmproddvdslem 16367 prmind2 16390 prmreclem2 16618 lubun 18233 efgsp1 19343 unocv 20885 coe1fzgsumdlem 21472 evl1gsumdlem 21522 basdif0 22103 isclo 22238 ordtrest2 22355 ptbasfi 22732 ptcnplem 22772 ptrescn 22790 ordthmeolem 22952 prdsxmetlem 23521 prdsbl 23647 iblcnlem1 24952 ellimc2 25041 rlimcnp 26115 xrlimcnp 26118 ftalem3 26224 dchreq 26406 2sqlem10 26576 dchrisum0flb 26658 pntpbnd1 26734 wlkp1lem8 28048 pthdlem1 28134 crctcshwlkn0lem7 28181 wwlksnext 28258 clwwlkccatlem 28353 clwwlkel 28410 clwwlkwwlksb 28418 wwlksext2clwwlk 28421 clwwlknonex2lem2 28472 3wlkdlem4 28526 3pthdlem1 28528 upgr4cycl4dv4e 28549 dfconngr1 28552 cntzun 31320 ordtrest2NEW 31873 subfacp1lem3 33144 subfacp1lem5 33146 erdszelem8 33160 hfext 34485 bj-raldifsn 35271 finixpnum 35762 lindsadd 35770 lindsenlbs 35772 poimirlem26 35803 poimirlem27 35804 poimirlem32 35809 prdsbnd 35951 rrnequiv 35993 hdmap14lem13 39894 |
Copyright terms: Public domain | W3C validator |