| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4147 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 ∪ cun 3912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3449 df-un 3919 |
| This theorem is referenced by: ralun 4161 raldifeq 4457 ralprgf 4658 ralprg 4660 raltpg 4662 ralunsn 4858 disjxun 5105 naddunif 8657 undifixp 8907 ixpfi2 9301 dffi3 9382 fseqenlem1 9977 hashf1lem1 14420 pfxsuffeqwrdeq 14663 rexfiuz 15314 modfsummods 15759 modfsummod 15760 coprmproddvdslem 16632 prmind2 16655 prmreclem2 16888 lubun 18474 efgsp1 19667 unocv 21589 coe1fzgsumdlem 22190 evl1gsumdlem 22243 basdif0 22840 isclo 22974 ordtrest2 23091 ptbasfi 23468 ptcnplem 23508 ptrescn 23526 ordthmeolem 23688 prdsxmetlem 24256 prdsbl 24379 iblcnlem1 25689 ellimc2 25778 rlimcnp 26875 xrlimcnp 26878 ftalem3 26985 dchreq 27169 2sqlem10 27339 dchrisum0flb 27421 pntpbnd1 27497 addsuniflem 27908 mulsuniflem 28052 wlkp1lem8 29608 pthdlem1 29696 crctcshwlkn0lem7 29746 wwlksnext 29823 clwwlkccatlem 29918 clwwlkel 29975 clwwlkwwlksb 29983 wwlksext2clwwlk 29986 clwwlknonex2lem2 30037 3wlkdlem4 30091 3pthdlem1 30093 upgr4cycl4dv4e 30114 dfconngr1 30117 cntzun 33008 ordtrest2NEW 33913 subfacp1lem3 35169 subfacp1lem5 35171 erdszelem8 35185 hfext 36171 bj-raldifsn 37088 finixpnum 37599 lindsadd 37607 lindsenlbs 37609 poimirlem26 37640 poimirlem27 37641 poimirlem32 37646 prdsbnd 37787 rrnequiv 37829 hdmap14lem13 41874 usgrexmpl1lem 48012 usgrexmpl2lem 48017 usgrexmpl2trifr 48028 |
| Copyright terms: Public domain | W3C validator |