Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4116 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1825 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1876 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3070 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3070 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3070 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 626 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ∈ wcel 2109 ∀wral 3065 ∪ cun 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-v 3432 df-un 3896 |
This theorem is referenced by: ralun 4130 raldifeq 4429 ralprgf 4633 ralprg 4635 raltpg 4639 ralunsn 4830 disjxun 5076 undifixp 8696 ixpfi2 9078 dffi3 9151 fseqenlem1 9764 hashf1lem1 14149 hashf1lem1OLD 14150 pfxsuffeqwrdeq 14392 rexfiuz 15040 modfsummods 15486 modfsummod 15487 coprmproddvdslem 16348 prmind2 16371 prmreclem2 16599 lubun 18214 efgsp1 19324 unocv 20866 coe1fzgsumdlem 21453 evl1gsumdlem 21503 basdif0 22084 isclo 22219 ordtrest2 22336 ptbasfi 22713 ptcnplem 22753 ptrescn 22771 ordthmeolem 22933 prdsxmetlem 23502 prdsbl 23628 iblcnlem1 24933 ellimc2 25022 rlimcnp 26096 xrlimcnp 26099 ftalem3 26205 dchreq 26387 2sqlem10 26557 dchrisum0flb 26639 pntpbnd1 26715 wlkp1lem8 28028 pthdlem1 28113 crctcshwlkn0lem7 28160 wwlksnext 28237 clwwlkccatlem 28332 clwwlkel 28389 clwwlkwwlksb 28397 wwlksext2clwwlk 28400 clwwlknonex2lem2 28451 3wlkdlem4 28505 3pthdlem1 28507 upgr4cycl4dv4e 28528 dfconngr1 28531 cntzun 31299 ordtrest2NEW 31852 subfacp1lem3 33123 subfacp1lem5 33125 erdszelem8 33139 hfext 34464 bj-raldifsn 35250 finixpnum 35741 lindsadd 35749 lindsenlbs 35751 poimirlem26 35782 poimirlem27 35783 poimirlem32 35788 prdsbnd 35930 rrnequiv 35972 hdmap14lem13 39873 |
Copyright terms: Public domain | W3C validator |