| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4131 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1871 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3048 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∀wral 3047 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-un 3902 |
| This theorem is referenced by: ralun 4145 raldifeq 4441 ralprgf 4644 ralprg 4646 raltpg 4648 ralunsn 4843 disjxun 5087 naddunif 8608 undifixp 8858 ixpfi2 9234 dffi3 9315 fseqenlem1 9915 hashf1lem1 14362 pfxsuffeqwrdeq 14605 rexfiuz 15255 modfsummods 15700 modfsummod 15701 coprmproddvdslem 16573 prmind2 16596 prmreclem2 16829 lubun 18421 efgsp1 19649 unocv 21617 coe1fzgsumdlem 22218 evl1gsumdlem 22271 basdif0 22868 isclo 23002 ordtrest2 23119 ptbasfi 23496 ptcnplem 23536 ptrescn 23554 ordthmeolem 23716 prdsxmetlem 24283 prdsbl 24406 iblcnlem1 25716 ellimc2 25805 rlimcnp 26902 xrlimcnp 26905 ftalem3 27012 dchreq 27196 2sqlem10 27366 dchrisum0flb 27448 pntpbnd1 27524 addsuniflem 27944 mulsuniflem 28088 pw2cut2 28382 wlkp1lem8 29657 pthdlem1 29744 crctcshwlkn0lem7 29794 wwlksnext 29871 clwwlkccatlem 29969 clwwlkel 30026 clwwlkwwlksb 30034 wwlksext2clwwlk 30037 clwwlknonex2lem2 30088 3wlkdlem4 30142 3pthdlem1 30144 upgr4cycl4dv4e 30165 dfconngr1 30168 cntzun 33048 ordtrest2NEW 33936 subfacp1lem3 35226 subfacp1lem5 35228 erdszelem8 35242 hfext 36227 bj-raldifsn 37144 finixpnum 37644 lindsadd 37652 lindsenlbs 37654 poimirlem26 37685 poimirlem27 37686 poimirlem32 37691 prdsbnd 37832 rrnequiv 37874 hdmap14lem13 41978 usgrexmpl1lem 48120 usgrexmpl2lem 48125 usgrexmpl2trifr 48136 |
| Copyright terms: Public domain | W3C validator |