| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4150 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3046 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3046 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3045 ∪ cun 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-v 3452 df-un 3922 |
| This theorem is referenced by: ralun 4164 raldifeq 4460 ralprgf 4661 ralprg 4663 raltpg 4665 ralunsn 4861 disjxun 5108 naddunif 8660 undifixp 8910 ixpfi2 9308 dffi3 9389 fseqenlem1 9984 hashf1lem1 14427 pfxsuffeqwrdeq 14670 rexfiuz 15321 modfsummods 15766 modfsummod 15767 coprmproddvdslem 16639 prmind2 16662 prmreclem2 16895 lubun 18481 efgsp1 19674 unocv 21596 coe1fzgsumdlem 22197 evl1gsumdlem 22250 basdif0 22847 isclo 22981 ordtrest2 23098 ptbasfi 23475 ptcnplem 23515 ptrescn 23533 ordthmeolem 23695 prdsxmetlem 24263 prdsbl 24386 iblcnlem1 25696 ellimc2 25785 rlimcnp 26882 xrlimcnp 26885 ftalem3 26992 dchreq 27176 2sqlem10 27346 dchrisum0flb 27428 pntpbnd1 27504 addsuniflem 27915 mulsuniflem 28059 wlkp1lem8 29615 pthdlem1 29703 crctcshwlkn0lem7 29753 wwlksnext 29830 clwwlkccatlem 29925 clwwlkel 29982 clwwlkwwlksb 29990 wwlksext2clwwlk 29993 clwwlknonex2lem2 30044 3wlkdlem4 30098 3pthdlem1 30100 upgr4cycl4dv4e 30121 dfconngr1 30124 cntzun 33015 ordtrest2NEW 33920 subfacp1lem3 35176 subfacp1lem5 35178 erdszelem8 35192 hfext 36178 bj-raldifsn 37095 finixpnum 37606 lindsadd 37614 lindsenlbs 37616 poimirlem26 37647 poimirlem27 37648 poimirlem32 37653 prdsbnd 37794 rrnequiv 37836 hdmap14lem13 41881 usgrexmpl1lem 48016 usgrexmpl2lem 48021 usgrexmpl2trifr 48032 |
| Copyright terms: Public domain | W3C validator |