![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4193 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1815 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1867 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3059 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3059 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3059 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1534 ∈ wcel 2105 ∀wral 3058 ∪ cun 3960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ral 3059 df-v 3479 df-un 3967 |
This theorem is referenced by: ralun 4207 raldifeq 4499 ralprgf 4698 ralprg 4700 raltpg 4702 ralunsn 4898 disjxun 5145 naddunif 8729 undifixp 8972 ixpfi2 9387 dffi3 9468 fseqenlem1 10061 hashf1lem1 14490 pfxsuffeqwrdeq 14732 rexfiuz 15382 modfsummods 15825 modfsummod 15826 coprmproddvdslem 16695 prmind2 16718 prmreclem2 16950 lubun 18572 efgsp1 19769 unocv 21715 coe1fzgsumdlem 22322 evl1gsumdlem 22375 basdif0 22975 isclo 23110 ordtrest2 23227 ptbasfi 23604 ptcnplem 23644 ptrescn 23662 ordthmeolem 23824 prdsxmetlem 24393 prdsbl 24519 iblcnlem1 25837 ellimc2 25926 rlimcnp 27022 xrlimcnp 27025 ftalem3 27132 dchreq 27316 2sqlem10 27486 dchrisum0flb 27568 pntpbnd1 27644 addsuniflem 28048 mulsuniflem 28189 wlkp1lem8 29712 pthdlem1 29798 crctcshwlkn0lem7 29845 wwlksnext 29922 clwwlkccatlem 30017 clwwlkel 30074 clwwlkwwlksb 30082 wwlksext2clwwlk 30085 clwwlknonex2lem2 30136 3wlkdlem4 30190 3pthdlem1 30192 upgr4cycl4dv4e 30213 dfconngr1 30216 cntzun 33053 ordtrest2NEW 33883 subfacp1lem3 35166 subfacp1lem5 35168 erdszelem8 35182 hfext 36164 bj-raldifsn 37082 finixpnum 37591 lindsadd 37599 lindsenlbs 37601 poimirlem26 37632 poimirlem27 37633 poimirlem32 37638 prdsbnd 37779 rrnequiv 37821 hdmap14lem13 41862 usgrexmpl1lem 47915 usgrexmpl2lem 47920 usgrexmpl2trifr 47931 |
Copyright terms: Public domain | W3C validator |