| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4143 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 ∪ cun 3909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-un 3916 |
| This theorem is referenced by: ralun 4157 raldifeq 4453 ralprgf 4654 ralprg 4656 raltpg 4658 ralunsn 4854 disjxun 5100 naddunif 8634 undifixp 8884 ixpfi2 9277 dffi3 9358 fseqenlem1 9953 hashf1lem1 14396 pfxsuffeqwrdeq 14639 rexfiuz 15290 modfsummods 15735 modfsummod 15736 coprmproddvdslem 16608 prmind2 16631 prmreclem2 16864 lubun 18456 efgsp1 19651 unocv 21622 coe1fzgsumdlem 22223 evl1gsumdlem 22276 basdif0 22873 isclo 23007 ordtrest2 23124 ptbasfi 23501 ptcnplem 23541 ptrescn 23559 ordthmeolem 23721 prdsxmetlem 24289 prdsbl 24412 iblcnlem1 25722 ellimc2 25811 rlimcnp 26908 xrlimcnp 26911 ftalem3 27018 dchreq 27202 2sqlem10 27372 dchrisum0flb 27454 pntpbnd1 27530 addsuniflem 27948 mulsuniflem 28092 wlkp1lem8 29659 pthdlem1 29746 crctcshwlkn0lem7 29796 wwlksnext 29873 clwwlkccatlem 29968 clwwlkel 30025 clwwlkwwlksb 30033 wwlksext2clwwlk 30036 clwwlknonex2lem2 30087 3wlkdlem4 30141 3pthdlem1 30143 upgr4cycl4dv4e 30164 dfconngr1 30167 cntzun 33051 ordtrest2NEW 33906 subfacp1lem3 35162 subfacp1lem5 35164 erdszelem8 35178 hfext 36164 bj-raldifsn 37081 finixpnum 37592 lindsadd 37600 lindsenlbs 37602 poimirlem26 37633 poimirlem27 37634 poimirlem32 37639 prdsbnd 37780 rrnequiv 37822 hdmap14lem13 41867 usgrexmpl1lem 48005 usgrexmpl2lem 48010 usgrexmpl2trifr 48021 |
| Copyright terms: Public domain | W3C validator |