![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4179 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1874 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3063 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1540 ∈ wcel 2107 ∀wral 3062 ∪ cun 3947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-v 3477 df-un 3954 |
This theorem is referenced by: ralun 4193 raldifeq 4494 ralprgf 4697 ralprg 4699 raltpg 4703 ralunsn 4895 disjxun 5147 naddunif 8692 undifixp 8928 ixpfi2 9350 dffi3 9426 fseqenlem1 10019 hashf1lem1 14415 hashf1lem1OLD 14416 pfxsuffeqwrdeq 14648 rexfiuz 15294 modfsummods 15739 modfsummod 15740 coprmproddvdslem 16599 prmind2 16622 prmreclem2 16850 lubun 18468 efgsp1 19605 unocv 21233 coe1fzgsumdlem 21825 evl1gsumdlem 21875 basdif0 22456 isclo 22591 ordtrest2 22708 ptbasfi 23085 ptcnplem 23125 ptrescn 23143 ordthmeolem 23305 prdsxmetlem 23874 prdsbl 24000 iblcnlem1 25305 ellimc2 25394 rlimcnp 26470 xrlimcnp 26473 ftalem3 26579 dchreq 26761 2sqlem10 26931 dchrisum0flb 27013 pntpbnd1 27089 addsuniflem 27487 mulsuniflem 27607 wlkp1lem8 28968 pthdlem1 29054 crctcshwlkn0lem7 29101 wwlksnext 29178 clwwlkccatlem 29273 clwwlkel 29330 clwwlkwwlksb 29338 wwlksext2clwwlk 29341 clwwlknonex2lem2 29392 3wlkdlem4 29446 3pthdlem1 29448 upgr4cycl4dv4e 29469 dfconngr1 29472 cntzun 32243 ordtrest2NEW 32934 subfacp1lem3 34204 subfacp1lem5 34206 erdszelem8 34220 hfext 35186 bj-raldifsn 36029 finixpnum 36521 lindsadd 36529 lindsenlbs 36531 poimirlem26 36562 poimirlem27 36563 poimirlem32 36568 prdsbnd 36709 rrnequiv 36751 hdmap14lem13 40799 |
Copyright terms: Public domain | W3C validator |