Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4108 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1823 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1874 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 274 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 626 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 302 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∀wral 3063 ∪ cun 3881 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-un 3888 |
This theorem is referenced by: ralun 4122 raldifeq 4421 ralprgf 4625 ralprg 4627 raltpg 4631 ralunsn 4822 disjxun 5068 undifixp 8680 ixpfi2 9047 dffi3 9120 fseqenlem1 9711 hashf1lem1 14096 hashf1lem1OLD 14097 pfxsuffeqwrdeq 14339 rexfiuz 14987 modfsummods 15433 modfsummod 15434 coprmproddvdslem 16295 prmind2 16318 prmreclem2 16546 lubun 18148 efgsp1 19258 unocv 20797 coe1fzgsumdlem 21382 evl1gsumdlem 21432 basdif0 22011 isclo 22146 ordtrest2 22263 ptbasfi 22640 ptcnplem 22680 ptrescn 22698 ordthmeolem 22860 prdsxmetlem 23429 prdsbl 23553 iblcnlem1 24857 ellimc2 24946 rlimcnp 26020 xrlimcnp 26023 ftalem3 26129 dchreq 26311 2sqlem10 26481 dchrisum0flb 26563 pntpbnd1 26639 wlkp1lem8 27950 pthdlem1 28035 crctcshwlkn0lem7 28082 wwlksnext 28159 clwwlkccatlem 28254 clwwlkel 28311 clwwlkwwlksb 28319 wwlksext2clwwlk 28322 clwwlknonex2lem2 28373 3wlkdlem4 28427 3pthdlem1 28429 upgr4cycl4dv4e 28450 dfconngr1 28453 cntzun 31222 ordtrest2NEW 31775 subfacp1lem3 33044 subfacp1lem5 33046 erdszelem8 33060 hfext 34412 bj-raldifsn 35198 finixpnum 35689 lindsadd 35697 lindsenlbs 35699 poimirlem26 35730 poimirlem27 35731 poimirlem32 35736 prdsbnd 35878 rrnequiv 35920 hdmap14lem13 39821 |
Copyright terms: Public domain | W3C validator |