| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4135 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3045 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3045 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∀wral 3044 ∪ cun 3901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3438 df-un 3908 |
| This theorem is referenced by: ralun 4149 raldifeq 4445 ralprgf 4646 ralprg 4648 raltpg 4650 ralunsn 4845 disjxun 5090 naddunif 8611 undifixp 8861 ixpfi2 9240 dffi3 9321 fseqenlem1 9918 hashf1lem1 14362 pfxsuffeqwrdeq 14604 rexfiuz 15255 modfsummods 15700 modfsummod 15701 coprmproddvdslem 16573 prmind2 16596 prmreclem2 16829 lubun 18421 efgsp1 19616 unocv 21587 coe1fzgsumdlem 22188 evl1gsumdlem 22241 basdif0 22838 isclo 22972 ordtrest2 23089 ptbasfi 23466 ptcnplem 23506 ptrescn 23524 ordthmeolem 23686 prdsxmetlem 24254 prdsbl 24377 iblcnlem1 25687 ellimc2 25776 rlimcnp 26873 xrlimcnp 26876 ftalem3 26983 dchreq 27167 2sqlem10 27337 dchrisum0flb 27419 pntpbnd1 27495 addsuniflem 27913 mulsuniflem 28057 wlkp1lem8 29624 pthdlem1 29711 crctcshwlkn0lem7 29761 wwlksnext 29838 clwwlkccatlem 29933 clwwlkel 29990 clwwlkwwlksb 29998 wwlksext2clwwlk 30001 clwwlknonex2lem2 30052 3wlkdlem4 30106 3pthdlem1 30108 upgr4cycl4dv4e 30129 dfconngr1 30132 cntzun 33022 ordtrest2NEW 33896 subfacp1lem3 35165 subfacp1lem5 35167 erdszelem8 35181 hfext 36167 bj-raldifsn 37084 finixpnum 37595 lindsadd 37603 lindsenlbs 37605 poimirlem26 37636 poimirlem27 37637 poimirlem32 37642 prdsbnd 37783 rrnequiv 37825 hdmap14lem13 41869 usgrexmpl1lem 48015 usgrexmpl2lem 48020 usgrexmpl2trifr 48031 |
| Copyright terms: Public domain | W3C validator |