| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version | ||
| Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elunant 4159 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
| 2 | 1 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
| 3 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
| 4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 5 | df-ral 3052 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
| 6 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
| 7 | df-ral 3052 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
| 8 | 6, 7 | anbi12i 628 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
| 9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∀wral 3051 ∪ cun 3924 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-v 3461 df-un 3931 |
| This theorem is referenced by: ralun 4173 raldifeq 4469 ralprgf 4670 ralprg 4672 raltpg 4674 ralunsn 4870 disjxun 5117 naddunif 8705 undifixp 8948 ixpfi2 9362 dffi3 9443 fseqenlem1 10038 hashf1lem1 14473 pfxsuffeqwrdeq 14716 rexfiuz 15366 modfsummods 15809 modfsummod 15810 coprmproddvdslem 16681 prmind2 16704 prmreclem2 16937 lubun 18525 efgsp1 19718 unocv 21640 coe1fzgsumdlem 22241 evl1gsumdlem 22294 basdif0 22891 isclo 23025 ordtrest2 23142 ptbasfi 23519 ptcnplem 23559 ptrescn 23577 ordthmeolem 23739 prdsxmetlem 24307 prdsbl 24430 iblcnlem1 25741 ellimc2 25830 rlimcnp 26927 xrlimcnp 26930 ftalem3 27037 dchreq 27221 2sqlem10 27391 dchrisum0flb 27473 pntpbnd1 27549 addsuniflem 27960 mulsuniflem 28104 wlkp1lem8 29660 pthdlem1 29748 crctcshwlkn0lem7 29798 wwlksnext 29875 clwwlkccatlem 29970 clwwlkel 30027 clwwlkwwlksb 30035 wwlksext2clwwlk 30038 clwwlknonex2lem2 30089 3wlkdlem4 30143 3pthdlem1 30145 upgr4cycl4dv4e 30166 dfconngr1 30169 cntzun 33062 ordtrest2NEW 33954 subfacp1lem3 35204 subfacp1lem5 35206 erdszelem8 35220 hfext 36201 bj-raldifsn 37118 finixpnum 37629 lindsadd 37637 lindsenlbs 37639 poimirlem26 37670 poimirlem27 37671 poimirlem32 37676 prdsbnd 37817 rrnequiv 37859 hdmap14lem13 41899 usgrexmpl1lem 48025 usgrexmpl2lem 48030 usgrexmpl2trifr 48041 |
| Copyright terms: Public domain | W3C validator |