![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralunb | Structured version Visualization version GIF version |
Description: Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
ralunb | ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elunant 4207 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) | |
2 | 1 | albii 1817 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑))) |
3 | 19.26 1869 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝜑) ∧ (𝑥 ∈ 𝐵 → 𝜑)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
5 | df-ral 3068 | . 2 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝜑)) | |
6 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
7 | df-ral 3068 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑)) | |
8 | 6, 7 | anbi12i 627 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝜑))) |
9 | 4, 5, 8 | 3bitr4i 303 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∀wral 3067 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-un 3981 |
This theorem is referenced by: ralun 4221 raldifeq 4517 ralprgf 4717 ralprg 4719 raltpg 4723 ralunsn 4918 disjxun 5164 naddunif 8749 undifixp 8992 ixpfi2 9420 dffi3 9500 fseqenlem1 10093 hashf1lem1 14504 pfxsuffeqwrdeq 14746 rexfiuz 15396 modfsummods 15841 modfsummod 15842 coprmproddvdslem 16709 prmind2 16732 prmreclem2 16964 lubun 18585 efgsp1 19779 unocv 21721 coe1fzgsumdlem 22328 evl1gsumdlem 22381 basdif0 22981 isclo 23116 ordtrest2 23233 ptbasfi 23610 ptcnplem 23650 ptrescn 23668 ordthmeolem 23830 prdsxmetlem 24399 prdsbl 24525 iblcnlem1 25843 ellimc2 25932 rlimcnp 27026 xrlimcnp 27029 ftalem3 27136 dchreq 27320 2sqlem10 27490 dchrisum0flb 27572 pntpbnd1 27648 addsuniflem 28052 mulsuniflem 28193 wlkp1lem8 29716 pthdlem1 29802 crctcshwlkn0lem7 29849 wwlksnext 29926 clwwlkccatlem 30021 clwwlkel 30078 clwwlkwwlksb 30086 wwlksext2clwwlk 30089 clwwlknonex2lem2 30140 3wlkdlem4 30194 3pthdlem1 30196 upgr4cycl4dv4e 30217 dfconngr1 30220 cntzun 33044 ordtrest2NEW 33869 subfacp1lem3 35150 subfacp1lem5 35152 erdszelem8 35166 hfext 36147 bj-raldifsn 37066 finixpnum 37565 lindsadd 37573 lindsenlbs 37575 poimirlem26 37606 poimirlem27 37607 poimirlem32 37612 prdsbnd 37753 rrnequiv 37795 hdmap14lem13 41837 usgrexmpl1lem 47836 usgrexmpl2lem 47841 usgrexmpl2trifr 47852 |
Copyright terms: Public domain | W3C validator |