![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3968 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
2 | 19.26 1872 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
3 | elunant 4178 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
4 | 3 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
5 | dfss2 3968 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | dfss2 3968 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 626 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 ∈ wcel 2105 ∪ cun 3946 ⊆ wss 3948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-v 3475 df-un 3953 df-in 3955 df-ss 3965 |
This theorem is referenced by: unssi 4185 unssd 4186 unssad 4187 unssbd 4188 nsspssun 4257 uneqin 4278 prssg 4822 ssunsn2 4830 tpss 4838 iunopeqop 5521 eqrelrel 5797 xpsspw 5809 relun 5811 relcoi2 6276 pwuncl 7761 fnsuppres 8181 wfrlem15OLD 8329 naddov3 8685 naddasslem1 8699 naddasslem2 8700 dfer2 8710 isinf 9266 isinfOLD 9267 trcl 9729 supxrun 13302 trclun 14968 isumltss 15801 rpnnen2lem12 16175 lcmfunsnlem 16585 lcmfun 16589 coprmprod 16605 coprmproddvdslem 16606 lubun 18475 isipodrs 18497 ipodrsima 18501 unocv 21456 aspval2 21675 uncld 22778 restntr 22919 cmpcld 23139 uncmp 23140 ufprim 23646 tsmsfbas 23865 ovolctb2 25254 ovolun 25261 unmbl 25299 plyun0 25960 noextendseq 27421 noresle 27451 madebdayim 27634 sshjcl 30890 sshjval2 30946 shlub 30949 ssjo 30982 spanuni 31079 cntzun 32497 dfon2lem3 35076 dfon2lem7 35080 clsun 35529 lindsadd 36797 lindsenlbs 36799 mblfinlem3 36843 ismblfin 36845 paddssat 39001 pclunN 39085 paddunN 39114 poldmj1N 39115 pclfinclN 39137 lsmfgcl 42131 tfsconcatrnss 42415 ssuncl 42636 sssymdifcl 42638 undmrnresiss 42670 mptrcllem 42679 cnvrcl0 42691 dfrtrcl5 42695 brtrclfv2 42793 unhe1 42851 dffrege76 43005 uneqsn 43091 mnurndlem1 43355 setrec1lem4 47835 elpglem2 47857 |
Copyright terms: Public domain | W3C validator |