| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3934 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 2 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 3 | elunant 4150 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 5 | df-ss 3934 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | df-ss 3934 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∪ cun 3915 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-ss 3934 |
| This theorem is referenced by: unssi 4157 unssd 4158 unssad 4159 unssbd 4160 nsspssun 4234 uneqin 4255 prssg 4786 ssunsn2 4794 tpss 4804 iunopeqop 5484 eqrelrel 5763 xpsspw 5775 relun 5777 relcoi2 6253 pwuncl 7749 fnsuppres 8173 naddov3 8647 naddasslem1 8661 naddasslem2 8662 dfer2 8675 isinf 9214 isinfOLD 9215 trcl 9688 supxrun 13283 trclun 14987 isumltss 15821 rpnnen2lem12 16200 lcmfunsnlem 16618 lcmfun 16622 coprmprod 16638 coprmproddvdslem 16639 lubun 18481 isipodrs 18503 ipodrsima 18507 unocv 21596 aspval2 21814 uncld 22935 restntr 23076 cmpcld 23296 uncmp 23297 ufprim 23803 tsmsfbas 24022 ovolctb2 25400 ovolun 25407 unmbl 25445 plyun0 26109 noextendseq 27586 noresle 27616 madebdayim 27806 sshjcl 31291 sshjval2 31347 shlub 31350 ssjo 31383 spanuni 31480 tpssg 32473 cntzun 33015 unitprodclb 33367 dfon2lem3 35780 dfon2lem7 35784 clsun 36323 lindsadd 37614 lindsenlbs 37616 mblfinlem3 37660 ismblfin 37662 paddssat 39815 pclunN 39899 paddunN 39928 poldmj1N 39929 pclfinclN 39951 lsmfgcl 43070 tfsconcatrnss 43346 ssuncl 43566 sssymdifcl 43568 undmrnresiss 43600 mptrcllem 43609 cnvrcl0 43621 dfrtrcl5 43625 brtrclfv2 43723 unhe1 43781 dffrege76 43935 uneqsn 44021 mnurndlem1 44277 gpgprismgr4cycllem8 48096 setrec1lem4 49683 elpglem2 49705 |
| Copyright terms: Public domain | W3C validator |