| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3919 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 2 | 19.26 1871 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 3 | elunant 4134 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 4 | 3 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 5 | df-ss 3919 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | df-ss 3919 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 ∪ cun 3900 ⊆ wss 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-ss 3919 |
| This theorem is referenced by: unssi 4141 unssd 4142 unssad 4143 unssbd 4144 nsspssun 4218 uneqin 4239 prssg 4771 ssunsn2 4779 tpss 4789 iunopeqop 5461 eqrelrel 5737 xpsspw 5749 relun 5751 relcoi2 6224 pwuncl 7703 fnsuppres 8121 naddov3 8595 naddasslem1 8609 naddasslem2 8610 dfer2 8623 isinf 9149 trcl 9618 supxrun 13212 trclun 14918 isumltss 15752 rpnnen2lem12 16131 lcmfunsnlem 16549 lcmfun 16553 coprmprod 16569 coprmproddvdslem 16570 lubun 18418 isipodrs 18440 ipodrsima 18444 unocv 21615 aspval2 21833 uncld 22954 restntr 23095 cmpcld 23315 uncmp 23316 ufprim 23822 tsmsfbas 24041 ovolctb2 25418 ovolun 25425 unmbl 25463 plyun0 26127 noextendseq 27604 noresle 27634 madebdayim 27831 sshjcl 31330 sshjval2 31386 shlub 31389 ssjo 31422 spanuni 31519 tpssg 32512 cntzun 33043 unitprodclb 33349 tz9.1regs 35118 dfon2lem3 35818 dfon2lem7 35822 clsun 36361 lindsadd 37652 lindsenlbs 37654 mblfinlem3 37698 ismblfin 37700 paddssat 39852 pclunN 39936 paddunN 39965 poldmj1N 39966 pclfinclN 39988 lsmfgcl 43106 tfsconcatrnss 43382 ssuncl 43602 sssymdifcl 43604 undmrnresiss 43636 mptrcllem 43645 cnvrcl0 43657 dfrtrcl5 43661 brtrclfv2 43759 unhe1 43817 dffrege76 43971 uneqsn 44057 mnurndlem1 44313 gpgprismgr4cycllem8 48132 setrec1lem4 49721 elpglem2 49743 |
| Copyright terms: Public domain | W3C validator |