| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3915 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 2 | 19.26 1871 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 3 | elunant 4133 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 4 | 3 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 5 | df-ss 3915 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | df-ss 3915 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2113 ∪ cun 3896 ⊆ wss 3898 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-ss 3915 |
| This theorem is referenced by: unssi 4140 unssd 4141 unssad 4142 unssbd 4143 nsspssun 4217 uneqin 4238 prssg 4770 ssunsn2 4778 tpss 4788 iunopeqop 5464 eqrelrel 5741 xpsspw 5753 relun 5755 relcoi2 6229 pwuncl 7709 fnsuppres 8127 naddov3 8601 naddasslem1 8615 naddasslem2 8616 dfer2 8629 isinf 9156 trcl 9625 supxrun 13217 trclun 14923 isumltss 15757 rpnnen2lem12 16136 lcmfunsnlem 16554 lcmfun 16558 coprmprod 16574 coprmproddvdslem 16575 lubun 18423 isipodrs 18445 ipodrsima 18449 unocv 21619 aspval2 21837 uncld 22957 restntr 23098 cmpcld 23318 uncmp 23319 ufprim 23825 tsmsfbas 24044 ovolctb2 25421 ovolun 25428 unmbl 25466 plyun0 26130 noextendseq 27607 noresle 27637 madebdayim 27834 sshjcl 31337 sshjval2 31393 shlub 31396 ssjo 31429 spanuni 31526 tpssg 32519 cntzun 33055 unitprodclb 33361 esplyind 33613 tz9.1regs 35151 dfon2lem3 35848 dfon2lem7 35852 clsun 36393 lindsadd 37673 lindsenlbs 37675 mblfinlem3 37719 ismblfin 37721 paddssat 39933 pclunN 40017 paddunN 40046 poldmj1N 40047 pclfinclN 40069 lsmfgcl 43191 tfsconcatrnss 43467 ssuncl 43687 sssymdifcl 43689 undmrnresiss 43721 mptrcllem 43730 cnvrcl0 43742 dfrtrcl5 43746 brtrclfv2 43844 unhe1 43902 dffrege76 44056 uneqsn 44142 mnurndlem1 44398 gpgprismgr4cycllem8 48226 setrec1lem4 49815 elpglem2 49837 |
| Copyright terms: Public domain | W3C validator |