Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3903 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
2 | 19.26 1874 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
3 | elunant 4108 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
4 | 3 | albii 1823 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
5 | dfss2 3903 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | dfss2 3903 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 626 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
8 | 2, 4, 7 | 3bitr4i 302 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
9 | 1, 8 | bitr2i 275 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 ∪ cun 3881 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 |
This theorem is referenced by: unssi 4115 unssd 4116 unssad 4117 unssbd 4118 nsspssun 4188 uneqin 4209 prssg 4749 ssunsn2 4757 tpss 4765 iunopeqop 5429 pwundifOLD 5477 eqrelrel 5696 xpsspw 5708 relun 5710 relcoi2 6169 pwuncl 7598 fnsuppres 7978 wfrlem15OLD 8125 dfer2 8457 isinf 8965 trcl 9417 supxrun 12979 trclun 14653 isumltss 15488 rpnnen2lem12 15862 lcmfunsnlem 16274 lcmfun 16278 coprmprod 16294 coprmproddvdslem 16295 lubun 18148 isipodrs 18170 ipodrsima 18174 unocv 20797 aspval2 21012 uncld 22100 restntr 22241 cmpcld 22461 uncmp 22462 ufprim 22968 tsmsfbas 23187 ovolctb2 24561 ovolun 24568 unmbl 24606 plyun0 25263 sshjcl 29618 sshjval2 29674 shlub 29677 ssjo 29710 spanuni 29807 cntzun 31222 dfon2lem3 33667 dfon2lem7 33671 noextendseq 33797 noresle 33827 madebdayim 33997 clsun 34444 lindsadd 35697 lindsenlbs 35699 mblfinlem3 35743 ismblfin 35745 paddssat 37755 pclunN 37839 paddunN 37868 poldmj1N 37869 pclfinclN 37891 lsmfgcl 40815 ssuncl 41066 sssymdifcl 41068 undmrnresiss 41101 mptrcllem 41110 cnvrcl0 41122 dfrtrcl5 41126 brtrclfv2 41224 unhe1 41282 dffrege76 41436 uneqsn 41522 mnurndlem1 41788 setrec1lem4 46282 elpglem2 46303 |
Copyright terms: Public domain | W3C validator |