![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss 3993 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
2 | 19.26 1869 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
3 | elunant 4207 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
4 | 3 | albii 1817 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
5 | df-ss 3993 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | df-ss 3993 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 627 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 |
This theorem is referenced by: unssi 4214 unssd 4215 unssad 4216 unssbd 4217 nsspssun 4287 uneqin 4308 prssg 4844 ssunsn2 4852 tpss 4862 iunopeqop 5540 eqrelrel 5821 xpsspw 5833 relun 5835 relcoi2 6308 pwuncl 7805 fnsuppres 8232 wfrlem15OLD 8379 naddov3 8736 naddasslem1 8750 naddasslem2 8751 dfer2 8764 isinf 9323 isinfOLD 9324 trcl 9797 supxrun 13378 trclun 15063 isumltss 15896 rpnnen2lem12 16273 lcmfunsnlem 16688 lcmfun 16692 coprmprod 16708 coprmproddvdslem 16709 lubun 18585 isipodrs 18607 ipodrsima 18611 unocv 21721 aspval2 21941 uncld 23070 restntr 23211 cmpcld 23431 uncmp 23432 ufprim 23938 tsmsfbas 24157 ovolctb2 25546 ovolun 25553 unmbl 25591 plyun0 26256 noextendseq 27730 noresle 27760 madebdayim 27944 sshjcl 31387 sshjval2 31443 shlub 31446 ssjo 31479 spanuni 31576 cntzun 33044 unitprodclb 33382 dfon2lem3 35749 dfon2lem7 35753 clsun 36294 lindsadd 37573 lindsenlbs 37575 mblfinlem3 37619 ismblfin 37621 paddssat 39771 pclunN 39855 paddunN 39884 poldmj1N 39885 pclfinclN 39907 lsmfgcl 43031 tfsconcatrnss 43312 ssuncl 43532 sssymdifcl 43534 undmrnresiss 43566 mptrcllem 43575 cnvrcl0 43587 dfrtrcl5 43591 brtrclfv2 43689 unhe1 43747 dffrege76 43901 uneqsn 43987 mnurndlem1 44250 setrec1lem4 48782 elpglem2 48804 |
Copyright terms: Public domain | W3C validator |