| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3943 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 2 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 3 | elunant 4159 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 5 | df-ss 3943 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | df-ss 3943 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∪ cun 3924 ⊆ wss 3926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-ss 3943 |
| This theorem is referenced by: unssi 4166 unssd 4167 unssad 4168 unssbd 4169 nsspssun 4243 uneqin 4264 prssg 4795 ssunsn2 4803 tpss 4813 iunopeqop 5496 eqrelrel 5776 xpsspw 5788 relun 5790 relcoi2 6266 pwuncl 7764 fnsuppres 8190 wfrlem15OLD 8337 naddov3 8692 naddasslem1 8706 naddasslem2 8707 dfer2 8720 isinf 9268 isinfOLD 9269 trcl 9742 supxrun 13332 trclun 15033 isumltss 15864 rpnnen2lem12 16243 lcmfunsnlem 16660 lcmfun 16664 coprmprod 16680 coprmproddvdslem 16681 lubun 18525 isipodrs 18547 ipodrsima 18551 unocv 21640 aspval2 21858 uncld 22979 restntr 23120 cmpcld 23340 uncmp 23341 ufprim 23847 tsmsfbas 24066 ovolctb2 25445 ovolun 25452 unmbl 25490 plyun0 26154 noextendseq 27631 noresle 27661 madebdayim 27851 sshjcl 31336 sshjval2 31392 shlub 31395 ssjo 31428 spanuni 31525 tpssg 32518 cntzun 33062 unitprodclb 33404 dfon2lem3 35803 dfon2lem7 35807 clsun 36346 lindsadd 37637 lindsenlbs 37639 mblfinlem3 37683 ismblfin 37685 paddssat 39833 pclunN 39917 paddunN 39946 poldmj1N 39947 pclfinclN 39969 lsmfgcl 43098 tfsconcatrnss 43374 ssuncl 43594 sssymdifcl 43596 undmrnresiss 43628 mptrcllem 43637 cnvrcl0 43649 dfrtrcl5 43653 brtrclfv2 43751 unhe1 43809 dffrege76 43963 uneqsn 44049 mnurndlem1 44305 gpgprismgr4cycllem8 48101 setrec1lem4 49554 elpglem2 49576 |
| Copyright terms: Public domain | W3C validator |