| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version | ||
| Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
| Ref | Expression |
|---|---|
| unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3931 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
| 2 | 19.26 1870 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 3 | elunant 4147 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
| 4 | 3 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 5 | df-ss 3931 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 6 | df-ss 3931 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
| 7 | 5, 6 | anbi12i 628 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
| 8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
| 9 | 1, 8 | bitr2i 276 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 ∪ cun 3912 ⊆ wss 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 |
| This theorem is referenced by: unssi 4154 unssd 4155 unssad 4156 unssbd 4157 nsspssun 4231 uneqin 4252 prssg 4783 ssunsn2 4791 tpss 4801 iunopeqop 5481 eqrelrel 5760 xpsspw 5772 relun 5774 relcoi2 6250 pwuncl 7746 fnsuppres 8170 naddov3 8644 naddasslem1 8658 naddasslem2 8659 dfer2 8672 isinf 9207 isinfOLD 9208 trcl 9681 supxrun 13276 trclun 14980 isumltss 15814 rpnnen2lem12 16193 lcmfunsnlem 16611 lcmfun 16615 coprmprod 16631 coprmproddvdslem 16632 lubun 18474 isipodrs 18496 ipodrsima 18500 unocv 21589 aspval2 21807 uncld 22928 restntr 23069 cmpcld 23289 uncmp 23290 ufprim 23796 tsmsfbas 24015 ovolctb2 25393 ovolun 25400 unmbl 25438 plyun0 26102 noextendseq 27579 noresle 27609 madebdayim 27799 sshjcl 31284 sshjval2 31340 shlub 31343 ssjo 31376 spanuni 31473 tpssg 32466 cntzun 33008 unitprodclb 33360 dfon2lem3 35773 dfon2lem7 35777 clsun 36316 lindsadd 37607 lindsenlbs 37609 mblfinlem3 37653 ismblfin 37655 paddssat 39808 pclunN 39892 paddunN 39921 poldmj1N 39922 pclfinclN 39944 lsmfgcl 43063 tfsconcatrnss 43339 ssuncl 43559 sssymdifcl 43561 undmrnresiss 43593 mptrcllem 43602 cnvrcl0 43614 dfrtrcl5 43618 brtrclfv2 43716 unhe1 43774 dffrege76 43928 uneqsn 44014 mnurndlem1 44270 gpgprismgr4cycllem8 48092 setrec1lem4 49679 elpglem2 49701 |
| Copyright terms: Public domain | W3C validator |