Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unss | Structured version Visualization version GIF version |
Description: The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
Ref | Expression |
---|---|
unss | ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3907 | . 2 ⊢ ((𝐴 ∪ 𝐵) ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶)) | |
2 | 19.26 1873 | . . 3 ⊢ (∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
3 | elunant 4112 | . . . 4 ⊢ ((𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) | |
4 | 3 | albii 1822 | . . 3 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ ∀𝑥((𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ (𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
5 | dfss2 3907 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
6 | dfss2 3907 | . . . 4 ⊢ (𝐵 ⊆ 𝐶 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶)) | |
7 | 5, 6 | anbi12i 627 | . . 3 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (∀𝑥(𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶) ∧ ∀𝑥(𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶))) |
8 | 2, 4, 7 | 3bitr4i 303 | . 2 ⊢ (∀𝑥(𝑥 ∈ (𝐴 ∪ 𝐵) → 𝑥 ∈ 𝐶) ↔ (𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶)) |
9 | 1, 8 | bitr2i 275 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∈ wcel 2106 ∪ cun 3885 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-in 3894 df-ss 3904 |
This theorem is referenced by: unssi 4119 unssd 4120 unssad 4121 unssbd 4122 nsspssun 4191 uneqin 4212 prssg 4752 ssunsn2 4760 tpss 4768 iunopeqop 5435 pwundifOLD 5486 eqrelrel 5707 xpsspw 5719 relun 5721 relcoi2 6180 pwuncl 7620 fnsuppres 8007 wfrlem15OLD 8154 dfer2 8499 isinf 9036 trcl 9486 supxrun 13050 trclun 14725 isumltss 15560 rpnnen2lem12 15934 lcmfunsnlem 16346 lcmfun 16350 coprmprod 16366 coprmproddvdslem 16367 lubun 18233 isipodrs 18255 ipodrsima 18259 unocv 20885 aspval2 21102 uncld 22192 restntr 22333 cmpcld 22553 uncmp 22554 ufprim 23060 tsmsfbas 23279 ovolctb2 24656 ovolun 24663 unmbl 24701 plyun0 25358 sshjcl 29717 sshjval2 29773 shlub 29776 ssjo 29809 spanuni 29906 cntzun 31320 dfon2lem3 33761 dfon2lem7 33765 noextendseq 33870 noresle 33900 madebdayim 34070 clsun 34517 lindsadd 35770 lindsenlbs 35772 mblfinlem3 35816 ismblfin 35818 paddssat 37828 pclunN 37912 paddunN 37941 poldmj1N 37942 pclfinclN 37964 lsmfgcl 40899 ssuncl 41177 sssymdifcl 41179 undmrnresiss 41212 mptrcllem 41221 cnvrcl0 41233 dfrtrcl5 41237 brtrclfv2 41335 unhe1 41393 dffrege76 41547 uneqsn 41633 mnurndlem1 41899 setrec1lem4 46396 elpglem2 46417 |
Copyright terms: Public domain | W3C validator |