MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eqabbw Structured version   Visualization version   GIF version

Theorem eqabbw 2804
Description: Version of eqabb 2870 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.)
Hypothesis
Ref Expression
eqabbw.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
eqabbw (𝐴 = {𝑥𝜑} ↔ ∀𝑦(𝑦𝐴𝜓))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑥)

Proof of Theorem eqabbw
StepHypRef Expression
1 dfcleq 2724 . 2 (𝐴 = {𝑥𝜑} ↔ ∀𝑦(𝑦𝐴𝑦 ∈ {𝑥𝜑}))
2 df-clab 2710 . . . . 5 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
3 eqabbw.1 . . . . . 6 (𝑥 = 𝑦 → (𝜑𝜓))
43sbievw 2096 . . . . 5 ([𝑦 / 𝑥]𝜑𝜓)
52, 4bitri 275 . . . 4 (𝑦 ∈ {𝑥𝜑} ↔ 𝜓)
65bibi2i 337 . . 3 ((𝑦𝐴𝑦 ∈ {𝑥𝜑}) ↔ (𝑦𝐴𝜓))
76albii 1820 . 2 (∀𝑦(𝑦𝐴𝑦 ∈ {𝑥𝜑}) ↔ ∀𝑦(𝑦𝐴𝜓))
81, 7bitri 275 1 (𝐴 = {𝑥𝜑} ↔ ∀𝑦(𝑦𝐴𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539   = wceq 1541  [wsb 2067  wcel 2111  {cab 2709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723
This theorem is referenced by:  eqabcbw  2805  ru  3734  vn0  4292  eq0  4297  eq0rdv  4354  rzal  4456  vpwex  5313  fineqvpow  35138  bj-ru1  36987
  Copyright terms: Public domain W3C validator