![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqabbw | Structured version Visualization version GIF version |
Description: Version of eqabb 2873 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024.) |
Ref | Expression |
---|---|
eqabbw.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
eqabbw | ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2725 | . 2 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑})) | |
2 | df-clab 2710 | . . . . 5 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
3 | eqabbw.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 3 | sbievw 2095 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
5 | 2, 4 | bitri 274 | . . . 4 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) |
6 | 5 | bibi2i 337 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ (𝑦 ∈ 𝐴 ↔ 𝜓)) |
7 | 6 | albii 1821 | . 2 ⊢ (∀𝑦(𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) |
8 | 1, 7 | bitri 274 | 1 ⊢ (𝐴 = {𝑥 ∣ 𝜑} ↔ ∀𝑦(𝑦 ∈ 𝐴 ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 = wceq 1541 [wsb 2067 ∈ wcel 2106 {cab 2709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 |
This theorem is referenced by: vpwex 5375 fineqvpow 34382 |
Copyright terms: Public domain | W3C validator |