Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvpow Structured version   Visualization version   GIF version

Theorem fineqvpow 33065
Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.)
Assertion
Ref Expression
fineqvpow (Fin = V → ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Distinct variable groups:   𝑥,𝑤,𝑧   𝑥,𝑦,𝑧

Proof of Theorem fineqvpow
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4535 . . . . . 6 𝒫 𝑥 = {𝑣𝑣𝑥}
2 vex 3436 . . . . . . . 8 𝑥 ∈ V
3 eleq2w2 2734 . . . . . . . . 9 (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V))
4 pwfi 8961 . . . . . . . . 9 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
53, 4bitr3di 286 . . . . . . . 8 (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin))
62, 5mpbii 232 . . . . . . 7 (Fin = V → 𝒫 𝑥 ∈ Fin)
76elexd 3452 . . . . . 6 (Fin = V → 𝒫 𝑥 ∈ V)
81, 7eqeltrrid 2844 . . . . 5 (Fin = V → {𝑣𝑣𝑥} ∈ V)
9 elisset 2820 . . . . 5 ({𝑣𝑣𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣𝑣𝑥})
108, 9syl 17 . . . 4 (Fin = V → ∃𝑦 𝑦 = {𝑣𝑣𝑥})
11 sseq1 3946 . . . . . 6 (𝑣 = 𝑧 → (𝑣𝑥𝑧𝑥))
1211abeq2w 2815 . . . . 5 (𝑦 = {𝑣𝑣𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
1312exbii 1850 . . . 4 (∃𝑦 𝑦 = {𝑣𝑣𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
1410, 13sylib 217 . . 3 (Fin = V → ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
15 biimpr 219 . . . . 5 ((𝑧𝑦𝑧𝑥) → (𝑧𝑥𝑧𝑦))
1615alimi 1814 . . . 4 (∀𝑧(𝑧𝑦𝑧𝑥) → ∀𝑧(𝑧𝑥𝑧𝑦))
1716eximi 1837 . . 3 (∃𝑦𝑧(𝑧𝑦𝑧𝑥) → ∃𝑦𝑧(𝑧𝑥𝑧𝑦))
1814, 17syl 17 . 2 (Fin = V → ∃𝑦𝑧(𝑧𝑥𝑧𝑦))
19 dfss2 3907 . . . . 5 (𝑧𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
2019imbi1i 350 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2120albii 1822 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2221exbii 1850 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2318, 22sylib 217 1 (Fin = V → ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  Vcvv 3432  wss 3887  𝒫 cpw 4533  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-en 8734  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator