Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvpow | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
Ref | Expression |
---|---|
fineqvpow | ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4532 | . . . . . 6 ⊢ 𝒫 𝑥 = {𝑣 ∣ 𝑣 ⊆ 𝑥} | |
2 | vex 3426 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | eleq2w2 2734 | . . . . . . . . 9 ⊢ (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V)) | |
4 | pwfi 8923 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
5 | 3, 4 | bitr3di 285 | . . . . . . . 8 ⊢ (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin)) |
6 | 2, 5 | mpbii 232 | . . . . . . 7 ⊢ (Fin = V → 𝒫 𝑥 ∈ Fin) |
7 | 6 | elexd 3442 | . . . . . 6 ⊢ (Fin = V → 𝒫 𝑥 ∈ V) |
8 | 1, 7 | eqeltrrid 2844 | . . . . 5 ⊢ (Fin = V → {𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V) |
9 | elisset 2820 | . . . . 5 ⊢ ({𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (Fin = V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) |
11 | sseq1 3942 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
12 | 11 | abeq2w 2816 | . . . . 5 ⊢ (𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
13 | 12 | exbii 1851 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
14 | 10, 13 | sylib 217 | . . 3 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
15 | biimpr 219 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) | |
16 | 15 | alimi 1815 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
17 | 16 | eximi 1838 | . . 3 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
18 | 14, 17 | syl 17 | . 2 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
19 | dfss2 3903 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
20 | 19 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
21 | 20 | albii 1823 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
22 | 21 | exbii 1851 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
23 | 18, 22 | sylib 217 | 1 ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 Fincfn 8691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-1o 8267 df-en 8692 df-fin 8695 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |