Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fineqvpow Structured version   Visualization version   GIF version

Theorem fineqvpow 34391
Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.)
Assertion
Ref Expression
fineqvpow (Fin = V → ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Distinct variable groups:   𝑥,𝑤,𝑧   𝑥,𝑦,𝑧

Proof of Theorem fineqvpow
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-pw 4605 . . . . . 6 𝒫 𝑥 = {𝑣𝑣𝑥}
2 vex 3477 . . . . . . . 8 𝑥 ∈ V
3 eleq2w2 2727 . . . . . . . . 9 (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V))
4 pwfi 9181 . . . . . . . . 9 (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin)
53, 4bitr3di 285 . . . . . . . 8 (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin))
62, 5mpbii 232 . . . . . . 7 (Fin = V → 𝒫 𝑥 ∈ Fin)
76elexd 3494 . . . . . 6 (Fin = V → 𝒫 𝑥 ∈ V)
81, 7eqeltrrid 2837 . . . . 5 (Fin = V → {𝑣𝑣𝑥} ∈ V)
9 elisset 2814 . . . . 5 ({𝑣𝑣𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣𝑣𝑥})
108, 9syl 17 . . . 4 (Fin = V → ∃𝑦 𝑦 = {𝑣𝑣𝑥})
11 sseq1 4008 . . . . . 6 (𝑣 = 𝑧 → (𝑣𝑥𝑧𝑥))
1211eqabbw 2808 . . . . 5 (𝑦 = {𝑣𝑣𝑥} ↔ ∀𝑧(𝑧𝑦𝑧𝑥))
1312exbii 1849 . . . 4 (∃𝑦 𝑦 = {𝑣𝑣𝑥} ↔ ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
1410, 13sylib 217 . . 3 (Fin = V → ∃𝑦𝑧(𝑧𝑦𝑧𝑥))
15 biimpr 219 . . . . 5 ((𝑧𝑦𝑧𝑥) → (𝑧𝑥𝑧𝑦))
1615alimi 1812 . . . 4 (∀𝑧(𝑧𝑦𝑧𝑥) → ∀𝑧(𝑧𝑥𝑧𝑦))
1716eximi 1836 . . 3 (∃𝑦𝑧(𝑧𝑦𝑧𝑥) → ∃𝑦𝑧(𝑧𝑥𝑧𝑦))
1814, 17syl 17 . 2 (Fin = V → ∃𝑦𝑧(𝑧𝑥𝑧𝑦))
19 dfss2 3969 . . . . 5 (𝑧𝑥 ↔ ∀𝑤(𝑤𝑧𝑤𝑥))
2019imbi1i 348 . . . 4 ((𝑧𝑥𝑧𝑦) ↔ (∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2120albii 1820 . . 3 (∀𝑧(𝑧𝑥𝑧𝑦) ↔ ∀𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2221exbii 1849 . 2 (∃𝑦𝑧(𝑧𝑥𝑧𝑦) ↔ ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
2318, 22sylib 217 1 (Fin = V → ∃𝑦𝑧(∀𝑤(𝑤𝑧𝑤𝑥) → 𝑧𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1538   = wceq 1540  wex 1780  wcel 2105  {cab 2708  Vcvv 3473  wss 3949  𝒫 cpw 4603  Fincfn 8942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-om 7859  df-1o 8469  df-en 8943  df-fin 8946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator