Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvpow | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
Ref | Expression |
---|---|
fineqvpow | ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4535 | . . . . . 6 ⊢ 𝒫 𝑥 = {𝑣 ∣ 𝑣 ⊆ 𝑥} | |
2 | vex 3436 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | eleq2w2 2734 | . . . . . . . . 9 ⊢ (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V)) | |
4 | pwfi 8961 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
5 | 3, 4 | bitr3di 286 | . . . . . . . 8 ⊢ (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin)) |
6 | 2, 5 | mpbii 232 | . . . . . . 7 ⊢ (Fin = V → 𝒫 𝑥 ∈ Fin) |
7 | 6 | elexd 3452 | . . . . . 6 ⊢ (Fin = V → 𝒫 𝑥 ∈ V) |
8 | 1, 7 | eqeltrrid 2844 | . . . . 5 ⊢ (Fin = V → {𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V) |
9 | elisset 2820 | . . . . 5 ⊢ ({𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (Fin = V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) |
11 | sseq1 3946 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
12 | 11 | abeq2w 2815 | . . . . 5 ⊢ (𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
13 | 12 | exbii 1850 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
14 | 10, 13 | sylib 217 | . . 3 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
15 | biimpr 219 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) | |
16 | 15 | alimi 1814 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
17 | 16 | eximi 1837 | . . 3 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
18 | 14, 17 | syl 17 | . 2 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
19 | dfss2 3907 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
20 | 19 | imbi1i 350 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
21 | 20 | albii 1822 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
22 | 21 | exbii 1850 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
23 | 18, 22 | sylib 217 | 1 ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 Vcvv 3432 ⊆ wss 3887 𝒫 cpw 4533 Fincfn 8733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-om 7713 df-1o 8297 df-en 8734 df-fin 8737 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |