| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvpow | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| Ref | Expression |
|---|---|
| fineqvpow | ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4549 | . . . . . 6 ⊢ 𝒫 𝑥 = {𝑣 ∣ 𝑣 ⊆ 𝑥} | |
| 2 | vex 3440 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | eleq2w2 2727 | . . . . . . . . 9 ⊢ (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V)) | |
| 4 | pwfi 9203 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 5 | 3, 4 | bitr3di 286 | . . . . . . . 8 ⊢ (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin)) |
| 6 | 2, 5 | mpbii 233 | . . . . . . 7 ⊢ (Fin = V → 𝒫 𝑥 ∈ Fin) |
| 7 | 6 | elexd 3460 | . . . . . 6 ⊢ (Fin = V → 𝒫 𝑥 ∈ V) |
| 8 | 1, 7 | eqeltrrid 2836 | . . . . 5 ⊢ (Fin = V → {𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V) |
| 9 | elisset 2813 | . . . . 5 ⊢ ({𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (Fin = V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) |
| 11 | sseq1 3955 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
| 12 | 11 | eqabbw 2804 | . . . . 5 ⊢ (𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 13 | 12 | exbii 1849 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 14 | 10, 13 | sylib 218 | . . 3 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 15 | biimpr 220 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 16 | 15 | alimi 1812 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 17 | 16 | eximi 1836 | . . 3 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 18 | 14, 17 | syl 17 | . 2 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 19 | df-ss 3914 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
| 20 | 19 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 21 | 20 | albii 1820 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 22 | 21 | exbii 1849 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 23 | 18, 22 | sylib 218 | 1 ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 {cab 2709 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 Fincfn 8869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1o 8385 df-en 8870 df-dom 8871 df-fin 8873 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |