![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvpow | Structured version Visualization version GIF version |
Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
Ref | Expression |
---|---|
fineqvpow | ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pw 4605 | . . . . . 6 ⊢ 𝒫 𝑥 = {𝑣 ∣ 𝑣 ⊆ 𝑥} | |
2 | vex 3477 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
3 | eleq2w2 2727 | . . . . . . . . 9 ⊢ (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V)) | |
4 | pwfi 9181 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
5 | 3, 4 | bitr3di 285 | . . . . . . . 8 ⊢ (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin)) |
6 | 2, 5 | mpbii 232 | . . . . . . 7 ⊢ (Fin = V → 𝒫 𝑥 ∈ Fin) |
7 | 6 | elexd 3494 | . . . . . 6 ⊢ (Fin = V → 𝒫 𝑥 ∈ V) |
8 | 1, 7 | eqeltrrid 2837 | . . . . 5 ⊢ (Fin = V → {𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V) |
9 | elisset 2814 | . . . . 5 ⊢ ({𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) | |
10 | 8, 9 | syl 17 | . . . 4 ⊢ (Fin = V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) |
11 | sseq1 4008 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
12 | 11 | eqabbw 2808 | . . . . 5 ⊢ (𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
13 | 12 | exbii 1849 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
14 | 10, 13 | sylib 217 | . . 3 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
15 | biimpr 219 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) | |
16 | 15 | alimi 1812 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
17 | 16 | eximi 1836 | . . 3 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
18 | 14, 17 | syl 17 | . 2 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
19 | dfss2 3969 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
20 | 19 | imbi1i 348 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
21 | 20 | albii 1820 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
22 | 21 | exbii 1849 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
23 | 18, 22 | sylib 217 | 1 ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1538 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 Vcvv 3473 ⊆ wss 3949 𝒫 cpw 4603 Fincfn 8942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-om 7859 df-1o 8469 df-en 8943 df-fin 8946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |