| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fineqvpow | Structured version Visualization version GIF version | ||
| Description: If the Axiom of Infinity is negated, then the Axiom of Power Sets becomes redundant. (Contributed by BTernaryTau, 12-Sep-2024.) |
| Ref | Expression |
|---|---|
| fineqvpow | ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pw 4577 | . . . . . 6 ⊢ 𝒫 𝑥 = {𝑣 ∣ 𝑣 ⊆ 𝑥} | |
| 2 | vex 3463 | . . . . . . . 8 ⊢ 𝑥 ∈ V | |
| 3 | eleq2w2 2731 | . . . . . . . . 9 ⊢ (Fin = V → (𝑥 ∈ Fin ↔ 𝑥 ∈ V)) | |
| 4 | pwfi 9329 | . . . . . . . . 9 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
| 5 | 3, 4 | bitr3di 286 | . . . . . . . 8 ⊢ (Fin = V → (𝑥 ∈ V ↔ 𝒫 𝑥 ∈ Fin)) |
| 6 | 2, 5 | mpbii 233 | . . . . . . 7 ⊢ (Fin = V → 𝒫 𝑥 ∈ Fin) |
| 7 | 6 | elexd 3483 | . . . . . 6 ⊢ (Fin = V → 𝒫 𝑥 ∈ V) |
| 8 | 1, 7 | eqeltrrid 2839 | . . . . 5 ⊢ (Fin = V → {𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V) |
| 9 | elisset 2816 | . . . . 5 ⊢ ({𝑣 ∣ 𝑣 ⊆ 𝑥} ∈ V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) | |
| 10 | 8, 9 | syl 17 | . . . 4 ⊢ (Fin = V → ∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥}) |
| 11 | sseq1 3984 | . . . . . 6 ⊢ (𝑣 = 𝑧 → (𝑣 ⊆ 𝑥 ↔ 𝑧 ⊆ 𝑥)) | |
| 12 | 11 | eqabbw 2808 | . . . . 5 ⊢ (𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 13 | 12 | exbii 1848 | . . . 4 ⊢ (∃𝑦 𝑦 = {𝑣 ∣ 𝑣 ⊆ 𝑥} ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 14 | 10, 13 | sylib 218 | . . 3 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥)) |
| 15 | biimpr 220 | . . . . 5 ⊢ ((𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → (𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) | |
| 16 | 15 | alimi 1811 | . . . 4 ⊢ (∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 17 | 16 | eximi 1835 | . . 3 ⊢ (∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ 𝑧 ⊆ 𝑥) → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 18 | 14, 17 | syl 17 | . 2 ⊢ (Fin = V → ∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦)) |
| 19 | df-ss 3943 | . . . . 5 ⊢ (𝑧 ⊆ 𝑥 ↔ ∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥)) | |
| 20 | 19 | imbi1i 349 | . . . 4 ⊢ ((𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ (∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 21 | 20 | albii 1819 | . . 3 ⊢ (∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 22 | 21 | exbii 1848 | . 2 ⊢ (∃𝑦∀𝑧(𝑧 ⊆ 𝑥 → 𝑧 ∈ 𝑦) ↔ ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| 23 | 18, 22 | sylib 218 | 1 ⊢ (Fin = V → ∃𝑦∀𝑧(∀𝑤(𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑥) → 𝑧 ∈ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2108 {cab 2713 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 Fincfn 8959 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-dom 8961 df-fin 8963 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |